SYLLABUS FOR B.E. VII & VIII SEMESTER

(With effect from 2015-16 Academic year)

(ಶೈಕ್ಷಣಿಕವರ್ಷ 2015-16)

BACHELOR DEGREE IN DEPARTMENT OF MECHANICAL ENGINEERING OUT COME BASED EDUCATION

P.E.S. COLLEGE OF ENGINEERING,

MANDYA - 571 401, KARNATAKA (An Autonomous Institution Affiliated to VTU, Belagavi)

Grant -in- Aid Institution (Government of Karnataka)

ಪಿ.ಇ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ ಮಂಡ್ಯ-571 401, ಕರ್ನಾಟಕ (ವಿ.ಟಿ.ಯು, ಬೆಳಗಾವಿ ಅಡಿಯಲ್ಲಿನ ಸ್ವಾಯತ್ತ ಸಂಸ್ಥೆ) Ph: 08232- 220043, Fax : 08232 - 222075, Web : <u>www.pescemandya.org</u>

PREFACE

PES College of Engineering, Mandya, started in the year 1962, has become autonomous institute in the academic year 2008-09. Since, then it has been doing the academics and assessment activities successfully. The college is running eight undergraduate and eight Postgraduate programs including MBA and MCA which are affiliated to VTU, Belagavi.

India has recently become a Permanent Member of the Washington Accord. The accord was signed by the National Board of Accreditation (NBA) on behalf of India on 13th June 2014. It enables not only the mobility of our degree globally but also establishes equivalence to our degrees with that of the member nations. The implementation of Outcome Based Education (OBE) has been the core issue for enabling the equivalence and of Indian degrees and their mobility across the various countries.

Our Higher Educational Institution has adopted the Choice Based Credit System (CBCS) based semester structure with OBE scheme and grading system. Which provides the flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. There lies a shift in thinking, teaching and learning process moving towards Students Centric from Teachers Centric education which enhances the knowledge, skills & moral values of each student.

Choice Based Credit System (CBCS) provides the options for the students to select from the number of prescribed courses. The CBCS provides a 'cafeteria' type approach in which the students can Choose electives from a wide range of courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits, adopt an interdisciplinary approach for learning which enables integration of concepts, theories, techniques. These are greatly enhances the skill/employability of students.

In order to increase the Industry/Corporate readiness, many Soft Skills, self learning components and Personality Development modules have been added to the existing curriculum. In order to enhance creativity and innovation Mini Project and Industrial visit & Interaction are made mandatory for all undergraduate programs.

Dr. Umesh D R Deputy Dean (Academic) Associate Professor, Dept. of Computer Science & Engg. Dr. P S Puttaswamy Dean (Academic) Professor Dept. of Electrical & Electronics Engg.

PES College of Engineering, Mandya College Vision

"A leading institution imparting quality engineering and management education developing creative and socially responsible professionals"

College Mission

Mission of P E S College of Engineering is to,

- Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- Promote research, product development and industry-institution interaction.

About the Department of Mechanical Engineering

The department of Mechanical Engineering was established in the year 1962 during the origination of the institute. The department was granted academic autonomy in the year 2009. The department presently offers B.E in Mechanical Engineering, M Tech in Computer Integrated Manufacturing (CIM), M Tech in Machine Design, M.Sc., (Engg.) by research and research leading to Ph.D. The present intake capacity of the department is 120 for BE, 18 for M Tech CIM and 24 for M Tech Machine Design. The department has a faculty-student ratio of 1:15 for UG courses and 1:12 for PG courses. The department has well established laboratories to meet the academic requirements of UG and PG programmes and a skilled technical faculty to train the students. The department has its own library which has a collection of about 3861 reference books.

The department has been NBA accreditated for 3Years in 2017.

The department regularly organizes industrial visits, technical lectures by experts from industries and institutes in contemporary areas to bridge the gap between syllabi and current

developments. The students are encouraged to undergo industrial training as well as to take up industry oriented projects during their academic course. Mechanical Engineering Association, formed by the students and faculty of the department regularly organizes cocurricular and extracurricular activities for the students.

Department Vision

"Be a department well recognized for its ability to develop competent mechanical engineers capable of working in global environment"

Department Mission

The Mission of the Department of Mechanical Engineering is to:

- Provide quality education by competent faculty.
- Provide adequate infrastructure and learning ambience for the development of essential technical skills.
- Inculcate a sense of higher education and research orientation.
- Foster industry interaction.

Program Educational Objectives (PEOs)

The Department of Mechanical Engineering has formulated the following programme educational objectives for the under-graduate program in Mechanical Engineering:

The Mechanical Engineering graduates will be able to:

- **PEO1:** Use the fundamentals of basic science, mathematics and mechanical engineering, to pursue their career as engineers as well as to lead and manage teams in global organizations.
- **PEO2:** Pursue advanced education, research and development and engage in the process of life-long learning.
- PEO3: Become entrepreneurs in a responsible, professional and ethical manner to serve the

society.

Program Specific Outcomes (PSOs)

Engineering graduates should be able to:

- **PSO1:** Apply computer simulation and experimental methods in the design and development of sustainable products of mechanical systems.
- **PSO2:** Utilize the knowledge of advanced manufacturing and condition monitoring techniques in industrial applications.

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PES COLLEGE OF ENGINEERING, MANDYA
(An Autonomous Institution, Under VTU)

	Scheme of	er B.E. (ME)							
SI.	Course	Course Title	Teaching	Hrs/Week	Total Credit	Examination Marks			
110.	Coue		Dept.	Г:1:L:Ц	Crean	CIE	SEE	Total	
1.	P15ME71	Core Course I Automatic Control Engineering	Mechanical	3:2:0:5	4	50	50	100	
2.	P15ME72	Core Course II Management & Entrepreneurship	Mechanical	4:0:0:4	4	50	50	100	
3.	P15ME73	Core Course III Production Management	Mechanical	4:0:0:4	4	50	50	100	
4.	P15ME74#	Elective-IV	Mechanical	4:0:0:4	3	50	50	100	
5.	P15ME75#	Open Elective-I	Mechanical	4:0:0:4	3	50	50	100	
6.	P15MEL76	Laboratory I Design Lab	Mechanical	0:0:3:3	1.5	50	50	100	
7.	P15MEL77	Laboratory II Simulations Lab	Mechanical	0:0:3:3	1.5	50	50	100	
8.	P15ME78	Project Work Phase - I	Mechanical	0:0:4:2	2		50	50	
				Total	23	350	400	750	

	List of Electives													
		Elective - IV		Open Elective - I										
S1.	Course	Course	S1.	Course Course										
No.	Code	title	No.	Code	title									
1.	P15ME741	Industrial Automation	1.	P15ME751	Total Quality Management									
2.	P15ME742	Hydraulics & Pneumatics	2.	P15ME752	Operations Research									
3.	P15ME743	Theory of Plasticity	3.	P15ME753 Renewable Energy Technology										
4.	P15ME744	Gas Turbines	4.	P15ME754	Finite Element Method in Engineering									

	Scheme of Tea	ching and Examination	VIII Semester B.E. (ME)										
SI. No	Course	Course Title	Teaching	Hrs/ Week	Total Credit	Examination Marks							
110.	Coue		Dept.	L:T:P:H	Creun	CIE	SEE	Total					
1	D15ME91	Core Course I	Machanical	4.0.0.4	3	50	50	100					
1.	FIJME01	Industrial Robotics	Wiechanical	4.0.0.4	5	50	50	100					
2.	P15ME82#	Elective-V	Mechanical	4:0:0:4	3	50	50	100					
3.	P15ME83#	Elective-VI	Mechanical	4:0:0:4	3	50	50	100					
4.	P15ME84#	Open Elective-II	Mechanical	4:0:0:4	3	50	50	100					
5.	P15ME85	Project Work Phase - II	Mechanical	0:0:16:16	8	50	100	150					
6.	P15ME86	Internship	Mechanical	0:0:2:2	2	50		50					
		22	300	300	600								

	List of Electives												
Elective - V				Electiv	e - VI	Open Elective - II							
S1.	Course	Course	Sl.	Course	Course	S1.	Course	Course					
No.	Code	title	No.	Code	title	No.	Code	title					
1	D15ME921	Operations	1	D15ME931	Project	1	D15ME8/1	Industrial Robotics &					
1.	FIJME021	Research	1.	F I JIVIE 051	Management	1.	FIJME041	Automation					
		Foundry			Additive			Additive					
2.	P15ME822	&Welding	2.	P15ME832	Manufacturing	2.	P15ME842	Manufacturing					
		Technology			Techniques			Techniques					
2	D15ME922	Renewable Energy	2	D15ME922	Power Plant	2	D15ME942	Power Plant					
5.	FIJNIE625	Technology	5.	F I JIVIE 055	Engineering	5.	FIJNIE043	Engineering					
4	D15ME924	Computational		D15ME924	Tribology	4	D15ME944	Maintenance					
4.	FIJNIE024	Fluid Dynamics	4.	FIJME034	Thoology	4.	FIJME044	Engineering					

	<u>Sen</u>	nester:-VII									
Cou	rse Title: Automati	ic Control Engineeri	ing								
Course Code: P15ME71	Semester: VII	L-T-P-H: 3-2-0-5	Credits: 04								
Contact Period - Lecture: 5	2 Hrs. ; Exam:3Hrs.	Weightage: CIE:	50 %; SEE: 50%								
Course Objectives: The co	urse aims at strength	ening the ability of st	tudents in design and								
analysis of linear continues-time control systems to improve their static and transient behavior.											
Course Content											
Introduction and Math	UNI matical Madala a	[]-] f Dhysical Systems	. Concert of outematic								
introduction and Mathematical Models of Physical Systems: Concept of automatic											
controls, open and closed loop control systems, concepts of feedback control systems, requirement of an ideal control system. Examples of control systems - Speed control system											
Human body temperature	control system, H	ome heating system.	, Traffic control system,								
Liquid level control system	n. Definition of Lap	lace transformation,	Transfer function models,								
mathematical models of m	echanical systems, n	nodels of electrical ci	ircuits, models of DC and								
AC motors, models of h	ydraulic systems a	nd models of therm	nal systems. Analogous								
Systems- Force-voltage and	alogy and force-curr	ent analogy.	10 Hrs								
	UNI	T-II									
Block Diagrams & Signa	l Flow Graphs and	Time Response Ana	alysis: Transfer functions								
definition, block represent	ation of system elen	nents, reduction of bl	ock diagrams with single								
and multiple inputs. Signa	I flow graphs- Sign	al flow graph termin	nology, signal flow graph								
from block diagram, Mans	on s gain formula.	р ттт	10 Hrs								
Time Response Analyses	UNI. Time response ana	I-III Ivsis - Introduction	transient and steady state								
response of control system	standard test input	ts – sten ramn paral	bolic and impulse inputs								
First order system respon	se to step and ran	inputs, concepts	of time constant and its								
importance in speed of r	esponse. Second or	der system response	e to step input, transient								
response specifications. St	teady-state error and	alysis- control system	n type, steady-state error								
constants- static position e	rror constant, static	velocity error consta	int and static acceleration								
error. Stability definition,	mathematical concept	pt of stability, charac	teristic root locations and								
stability, Routh's stability	criterion, special cas	es of Routh's criterio	n. 10 Hrs								
F D A		Γ-IV	. 1 . 1								
requency Response And	alysis: Polar plots,	relative stability- col	Nuquist plat Erequence								
response analysis using bo	ode plot: Bode atten	uation diagrams stab	vility analysis using Bode								
plots	de plot. Dode atten	uation diagrams, stat	12 Hrs								
	UNI	T-V									
Root Locus and State-Sp	ace Analyses: Root	locus analysis- Introd	duction, definition of root								
loci, general rules for con	structing root loci,	root locus analysis c	of control systems. State-								
space analysis- introduct	ion, definitions, st	ate-space equations,	, transformation matrix,								
controllability and observa	bility.		10 Hrs								
Text Books											
1. Katsuhiko Ogata, Mo 2010, ISBN: 97881203	dern Control Eng 340107.	ineering, Phi Learni	ing Pvt Ltd, 5th Edition,								
2. Rao V Dukkipati, C 8173195549.	ontrol Systems, N	arosa Publishing He	ouse, 2008, ISBN: 978-								
3. Joseph J. Distefano, A	llen R. Stubberud a	nd Avan J. Williams	, Feedback and Control								
Systems, Schaum's O	outlines series, Tata	McGraw Hill, New	Delhi, 2 nd Edition, 2003,								
Reference Books											
1 I I Nagarath & M	Gonal Control sys	tems New age Inte	rnational nublishers Ath								
Edition, 2006, ISBN: 9	978-8122417753.	actions, new age fille									

- 2. F. Golnaraghi and B.C. Kuo, Automatic Control Systems, John Wiley & Sons, 9th Edition, 2009, ISBN: 978-0470048962.
- 3. Control Systems: Ashfaq Husain and Haroon Ashfaq, Dhanpat Rai & Co., 2015, ISBN: 978-8177000276.

Course Outcomes

- 1. Identify and classify the different types of control systems. Develop mathematical model for the mechanical, electrical, servo mechanism and hydraulic systems.
- 2. Represent the systems consisting of number of components in the form of block diagrams and signal flow graphs and Develop mathematical models using reduction technique of these block diagrams and signal flow graphs.
- 3. Obtain the time response and steady-state error of the system. Determine stability of the various control systems by applying Routh's stability criterion.
- 4. Obtain frequency response and Determine stability of control system applying Nyquist stability criterion and using Bode plot.

5.	Construct root loci from open loop transfer functions of control systems and Analyze the
	behavior of roots with system gain. Analyze complex systems having multi inputs and
	multi outputs using state-space method

Course Articulation Matrix															
					Р	rog	rai	n ()ut	con	ies			PS	0
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Identify and classify the different types of control systems. Develop mathematical model for the mechanical, electrical, servo mechanism and hydraulic systems.	3	3	2	1								1	1	
CO2	Represent the systems consisting of number of components in the form of block diagrams and signal flow graphs and Develop mathematical models using reduction technique of these block diagrams and signal flow graphs.	3	3	2		1							2	1	1
CO3	Obtain the time response and steady-state error of the system. Determine stability of the various control systems by applying Routh's stability criterion.	3	3	3	2	2							2	2	1
CO4	Obtain frequency response and Determine stability of control system by applying Nyquist stability criterion and using Bode plot.	3	3	3	2	3		2					2	2	
CO5	Construct root loci from open loop transfer functions of control systems and Analyze the behavior of roots with system gain. Analyze complex systems having multi inputs and multi outputs using state-space method.	3	3	3	2	3		1					2	1	

Course Title: Management and Entrepreneurship
Course Code: P15ME72Semester: VIIL-T-P-H: 4-0-0-0Credits: 04
Contact Period - Lecture: 52 Hrs.; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The course aims at enabling the students to understand the basic
concepts of Management, Principles of organization, organization theories, evolution of
entrepreneur concept, Types and functions of entrepreneur, characteristics, importance of
motivation and its kinds, project identification, preparation, selection and reporting.
Course Content
UNIT-I
MANAGEMENT: Introduction, meaning, nature and characteristics of management, scope
and functional area of management, management as a science, art or profession, management
& administration, role of management, levels of management, development of management
thought, early and modern management approaches. 10 Hrs
ORGANIZATION STRUCTURE: Principles of organization, organization theories,
departmentation, authority, power, organizing, organizational effectiveness, structuring the
organization, organizational change, organization charts, types of organizations, Span of
control, forms and functions of committees. 10 Hrs
UNIT-III ENTREDENELIDSHID: magning of antropropagy evolution of concept functions of
entrepreneur types of entrepreneur development of entrepreneurship stages in entrepreneurial
process role of entrepreneurs in economic development entrepreneurship in India
entrepreneurship and its barriers.
UNIT-IV
MOTIVATION, JOB ANALYSIS, JOB EVALUATION, WAGES & INCENTIVES:
Introduction, characteristics, importance, kinds of motivation. Thoughts of motivation
philosophy: Maslow's theory of needs, Gouglass Mc Gregore – 'X' & 'Y' theory, Herzberg's
theory, Incentives as motivators, managing dissatisfaction and frustration. Job analysis, job
description, job specification, job design: job evaluation, time recording, wage and incentives.
Wages, methods of wage payment, incentives. Bonus system. Non financial incentives. Time
rate v/s piece rate, fringe benefits, numericals. 12 Hrs
UNIT-V
PROJECTOLOGY AND SMALL SCALE INDUSTRIES (SSI): Meaning of a project,
project identification, project preparation, project selection, project report, need and
significance of a project report, contents, project planning, project monitoring and control,
project evaluation, errors of a project report, project appraisal, project cycle and project phases.
Identification of business opportunities: market, technical, financial and social feasibility study.
Steps to start SSI, Government support to SSI. 10 Hrs
Text Books
1. Principles of management, P C Tripathi, P N Reddy, Tata McGraw Hill.
2. Dynamics of Entrepreneurial Development & Management, Vasanth, Desai, Himalaya
Publishing House
3. Entrepreneurship Development, Small business enterprise, Poornima M, Charanthi
math, Pearson Education 2005(2&4)
Reference Books
1. Management Fundamentals Concepts, Application& skill development By Robert lusier,
Thomson
2. Management By Stephen Robbins, Pearson Education/PHI 17th Edition, 2003
3. Entrepreneurship Development, By SS Khanka, S Chand& Co
Course Outcomes

- 1. **Identify** the nature and characteristics of management, scope and functional area of management.
- 2. **Discuss** the Principles of organization, organization theories, departmentation, authority, power, organizing, organizational effectiveness, Span of control.
- 3. **Analyses** the stages in entrepreneurial process, role of entrepreneurs in economic development, entrepreneurship in India, entrepreneurship and its barriers.
- 4. **Analyze** the Job, job description, job specification, job design: job evaluation, time recording, wage and incentives. Wages, methods of wage payment, incentives. Bonus system. Non-financial incentives. Time rate v/s piece rate, fringe benefits.
- 5. **Generate** project identification, project preparation, project selection, project report, need and significance of a project report, contents, project planning, project monitoring and control, project evaluation, errors of a project report.

Course Articulation Matrix																
					Pro	gra	am	Ou	tco	me	S			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Identify nature and characteristics of management, scope and functional area of management	2	2	1									1	-	-	
CO2	Understand Principles of organization, organization theories, departmentation, authority, power, organizing, organizational effectiveness.	2	2										1	-	-	
CO3	Analyses stages in entrepreneurial process, role of entrepreneurs in economic development, entrepreneurship in India, entrepreneurship-its barriers	2	2										1	_	_	
CO4	Evaluate Job analysis, job description, job specification, job design: job evaluation, time recording, wage and incentives. Wages, methods of wage payment, incentives. Bonus system. Non-financial incentives. Time rate v/s piece rate, fringe benefits	2	2	1									1	_	_	
CO5	Generateprojectidentification,projectpreparation,projectselection,projectprojectreport,needandsignificance of a project report,contents,projectprojectplanning,projectevaluation,errorsof aprojectreport	2	2	1									1	_	_	

Course Title: Production Management												
Course Code: P15ME73Semester: VIIL-T-P-H: 4-0-0-4Credits: 04												
Contact Period - Lecture: 52 Hrs. ; Exam:3Hrs. Weightage: CIE: 50 %; SEE: 50%												
Course Objectives: The course aims at enabling the students to understand the basic												
concepts of production, forecasting, and various scheduling techniques related to												
manufacturing.												
Course Content												
UNIT-1 Introduction Introduction meaning and concepts of production management area of												
production: Introduction, meaning and concepts of production management, area of production management, relationship of PM, tools and techniques of PM, evolution of PM, PM, a system view point, PM today, productivity improvement, future of PM. product strategies, the product life cycle, productive system types, process focussed system, product focussed system, production to stock or order, productive system positioning strategies, process line technology, interdependent product lines, organization of the operations functions-process focussed organisation, product focussed organisation structure, difference												
between process and product focused. 10 Hrs												
UNIT-II												
Forecasting: Types and uses of forecasting, moving average, Exponentially weighed moving averages. Trend model with seasonal variation. Delphi technique.11Hrs												
UNIT-III												
Facilities Location and Layout: Introduction, general procedure for location, factors affecting location, locational analysis- cost analysis, quantitative method, weight method, GRID method, objectives of plant layout, factors affecting plant layout, material flow pattern, layout.												
UNIT-IV												
Scheduling: Master scheduling, scheduling sequence operation standard scheduling techniques. Johnson s rule for 2 machines, 3 machines, and n machines. Graphical method for 2 machines and n jobs												
UNIT-V												
Machine Loading Techniques: Indexing method, machine loading and follow up by use of Gantt Charts, Schedule boards and other commercial techniques.Production Control: Despatching and Expediting the orders. Centralized and Decentralized												
dispatching process order control. Follow up and progress reporting, rescheduling and priority rules. 10 Hrs												
Text Books												
 Buffa and Sarin, Modern Production/Operations Management, Wiley India Pvt. LtdNew Delhi, 8th Edition, 23 August 2007, 9788126513727 												
2. Samuel Eilon, Elements of Production Planning and Control, Universal Publishing Corporation, 1991, ISBN: 9788185027098												
 S.K.Hajra Choudhury, Nirjhar Roy, A.K. Hajra Choudhury, Production Management, Media Promotors & Pub. Pvt. Ltd., 1998, ISBN: 978-8185099255. 												
4. Joseph G.Monks, Operations Management, Tata McGRAW-Hill New Deini, 2004.												
Reference Books												
1. Barry Shore, Operations Management, McGraw-Hill Inc., USA, 1 st January 1973, ISBN: 9780070570450												
2. R. Panneerselvam, Production and Operations Management, PHI Publishers , 3 rd Edition,2006, ISBN: 9788120345553												

Course Outcomes

- 1. **Define** Production management, product life cycle, process focussed system, product focussed system
- 2. **Analyze** Productive system types, organization of the operations functions-process focussed organisation, product focussed organisation structure
- 3. **Describe** cost analysis.
- 4. **Compare** Types of forecasting moving average Exponentially weighed moving averages. Trend model with seasonal variation. Delphi technique.
- 5. **Discuss** Scheduling, standard scheduling techniques. Machine loading and follow up by use of Gantt Charts. Despatching and Expediting.

	Course	Art	icu	lati	on	Ma	triz	K							
					Pro	ogra	am	Ou	itco	me	s			PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Define:Productionmanagement,productcycle,process focussed system,product focussed system	1												-	-
CO2	Analyze: Productive system types, organization of the operations functions-process focussed organisation, product focussed organisation structure	1		2										-	-
CO3	Describe: cost analysis.					3							1	-	1
CO4	Compare: Types of forecasting moving average Exponentially weighed moving averages. Trend model with seasonal variation. Delphi technique					3							1	-	-
CO5	Discuss:Scheduling, standardschedulingtechniques.Machine loading and follow upbyuseofGanttCharts.Despatching and Expediting					2							2	-	-

Course Title: Industrial Automation											
Course Code: P15ME741	Semester: VII	L-T-P-H: 4-0-0-4	Credits: 03								
Contact Period - Lecture: 52	2 Hrs. ; Exam:3Hrs.	Weightage: CIE:	50 %; SEE: 50%								
Course Objectives: The c	ourse aims at enab	ling the students to u	understand the Industrial								
automation and Quality con	trol systems.										
	Course (Content									
	UNI	T-I									
INTRODUCTION: Prod	uction System F	acilities, Manufactu	ring Support systems,								
Automation in Production s	ystems, Automation	n principles & Strategi	ies.								
AUTOMATION: Basic	Elements of an	Automated System,	Advanced Automation								
Functions & Levels of Aut	Comation, Continuo	us versus Discrete co	introl, Computer Process								
control, Forms of Computer	Process Control.	г п									
HARDWARE COMPON	UNI. FNTS FOD AUT	1-11 Оматіон анд р	PROCESS CONTROL								
Sensors Actuators Ar	alog_to_Digital	Converters Digital	to-Analog Converters								
Input/Output Devices for D	iscrete Data	converters, Digital-	to-Analog Converters,								
AUTOMATED MANUFA	CTURING SYST	EMS: Components of	f Manufacturing systems.								
Classification of Manufactu	ring Systems, over	view of Classification	n Scheme, Single Station								
Manned Workstations and S	Single Station Autor	nated Cells.	12 Hrs								
	UNIT	Г -Ш									
CELLULAR MANUFAC	CTURING: Part	Families, Parts Cla	ssification and coding,								
Production Flow Analysis,	Cellular Manufactur	ring, Application of g	roup technology,								
FLEXIBLE MANUFACTURING SYSTEMS: Introduction to FMS, FMS Components,											
FMS Applications & Benefits, and FMS Planning & Implementation Issues.10 Hrs											
INSPECTION TECHNO Mashinga Construction	JLOGIES: Autor	mated Inspection,	Coordinate Measuring								
Elavible Inspection System	Inspection Progra	unining, Soltware, A	Application & Benefits, Machine Vision ontical								
Inspection Techniques & N	on-contact Non onti	cal Inspection Technology	plogies 10 Hrs								
Inspection Techniques & IV	UNI	T-V									
MANUFACTURING SU	PPORT SYSTEM:	Process Planning. (Computer Aided Process								
Planning, Concurrent Engi	neering & Design	for Manufacturing, A	Advanced Manufacturing								
Planning, lean production	and waste in man	ufacturing, Just-in T	ime Production System,								
Automation, Worker invo	olvement, Basic co	oncepts of lean and	d Agile manufacturing,								
Comparisons of Lean & Ag	ile Manufacturing.		10 Hrs								
Text Books											
1. M. P. Groover, Automati	ion, Production Sys	tems and Computer In	ntegrated Manufacturing,								
Pearson education. 3 rd E	dition, 2008, ISBN:	9788120334182									
2. Vajpayee, and S. Kant,	Principle of Con	nputer-Integrated N	Janufacturing , PHI, 1 st								
Edition, 1998, ISBN: 978	8-8120314764.										
1 Ambor C II & D S A	mhan Anatamy of	Automation Litaran	u Liconsina LLC 2012								
I. Allider G.H & P. S. Al ISDN: 0781258204256	inder, Anatomy of	Automation, Literar	y Licensing ,LLC 2012,								
2 Viswanandham Perform	ance Modeling of	Automated Manufact	uring Systems PHI 1 st								
Edition 2008 ISBN: 978	R8120308701	Automated Manufact	uning Systems, 1111, 1								
3. Krishna Kant, Computer	Based Industrial Co	ontrol EEE-PHI . 1 st	Edition, 15 August 2004								
ISBN: 9788120311237		······································									
	Course O	utcomes									
After learning all the units of	f the course, the stud	dent is able to;									
1 Identify: Production Sy	ustem Facilities M	anufacturing Support	systems Automation in								

1. Identify: Production System Facilities, Manufacturing Support systems, Automation in Production systems, Basic Elements of an Automated System, Forms of Computer

Process Control

- 2. **Analyze:** Sensors, Actuators, Analog-to-Digital Converters, Digital-to-Analog Converters, Single Station Manned Workstations and Single Station Automated Cells.
- 3. **Describe:** Production Flow Analysis, Cellular Manufacturing, Application of group technology and FMS Planning & Implementation Issues.
- 4. **Explain:** Traditional and Modern Quality Control Methods, Taguchi Methods in Quality Engineering, Automated Inspection, Coordinate Measuring Machines Construction, Inspection Probes on Machine Tools, Machine Vision, and Optical Inspection Techniques.
- **5. Discuss:** Process Planning, Computer Aided Process Planning, Concurrent Engineering & Design for Manufacturing, JIT production system, Basic concepts of lean and Agile manufacturing.

Course Articulation Matrix																
]	Pro	gra	ım	Ou	tco	me	s			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Identify: Production System Facilities, Manufacturing Support systems, Automation in Production systems, Basic Elements of an Automated System, Forms of Computer Process Control		1			2				1				-	-	
CO2	Analyze: Sensors, Actuators, Analog-to-Digital Converters, Digital-to-Analog Converters, Single Station Manned Workstations and Single Station Automated Cells.	2	1	1		2				2				-	-	
CO3	Describe: Production Flow Analysis, Cellular Manufacturing, Application of group technology and FMS Planning & Implementation Issues.		1	2		1								-	-	
CO4	Explain: Traditional and Modern Quality Control Methods, Taguchi Methods in Quality Engineering, Automated Inspection, Coordinate Measuring Machines Construction, Inspection Probes on Machine Tools, Machine Vision, and Optical Inspection Techniques.	2	2	1						2				-	-	
CO5	Discuss: Process Planning, Computer Aided Process Planning, Concurrent Engineering & Design for Manufacturing, JIT production system, Basic concepts of lean and Agile manufacturing.		1	1		2				1				-	-	

Course Title: Hydraulics and Pneumatics											
Course Code: P15ME742 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03											
Contact Period - Lecture: 52 Hrs.; Exam:3Hrs. Weightage: CIE: 50 %; SEE: 50%											
Course Objectives: The course aims at understanding and strengthening knowledge of the											
Hydraulic and Pneumatic basics, circuit diagram and circuit symbol, actuators, motors, valves											
and maintenance of hydraulic systems to students by exposing them to understand for											
different machines that are commonly used in industries.											
Course Content											
UNIT-I INTRODUCTION TO HUDDALILIC DOWED: Descel's law and problems on Descel's											
law. Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps											
Pumping theory pump classification gear pumps vane pumps piston pumps											
runping meory, pump classification, gear pumps, vane pumps, piston pumps, pump performance pump selection. Variable displacement pumps and Numericals											
HYDRAULIC ACTUATORS AND MOTORS: Linear Hydraulic Actuators [cylinders].											
Hydraulic Rotary Actuators, Gear motors, vane motors, piston motors, Hydraulic motor											
theoretical torque, power and flow rate, hydraulic motor performance. 10 Hrs											
UNIT-II											
CONTROL COMPONENTS IN HYDRAULIC SYSTEMS: Directional Control Valves											
Symbolic representation, Constructional features, pressure control valves, direct and pilot											
operated types, flow control valves.											
HYDRAULIC CIRCUIT DESIGN AND ANALYSIS: Control of single and double acting											
Hydraulic cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic											
system, Counter Balance Valve application. Hydraulic cylinder sequencing circuits. Locked											
cylinder using pilot check valve, cylinder synchronizing circuits, speed control of hydraulic evlinder, speed control of hydraulic motors, accumulators and accumulator circuits.											
UNIT-III											
MAINTENANCE OF HYDRAULIC SYSTEMS. Hydraulic oils Desirable properties											
general type of fluids, sealing devices, reservoir system, filters and strainers, problem caused											
by gases in hydraulic fluids, wear of moving parts due to solid particle contamination,											
temperature control, troubleshooting.											
INTRODUCTION TO PNEUMATIC CONTROL : Choice of working medium,											
Characteristics of compressed air. Structure of Pneumatic control system cylinder working											
end position cushioning, seals, mounting arrangements. Rod less cylinders types, working											
advantages. Rotary cylinder types construction and application. Design parameters selection.											
11 Hrs											
UNIT-IV											
DIRECTIONAL CONTROL VALVES: Symbolic representation as per ISO1219 and ISO 5500. Design and constructional aspects, poppet valves, slide valves speel valve, suspended											
seat type slide valve. Simple Pneumatic Control: Direct and indirect actuation pneumatic											
cylinders use of memory valve. Flow control valves and speed control of cylinders supply air											
throttling and exhaust air throttling use of quick exhaust valve. 10 Hrs											
UNIT-V											
MULTI-CYLINDER APPLICATIONS: Coordinated and sequential motion control.											
Motion and control diagrams Signal elimination methods. Cascading method principle.											
Practical application examples (up to two cylinders) using cascading method (using reversing											
valves).Compressed air: Production of compressed air compressors, preparation of											
compressed air-Driers, Filters, Regulators. Lubricators, Distribution of compressed air-Piping											
layout. 11 Hrs											
1 Anthony Especite Eluid Dower with applications. 5 th edition recover education. Inc.											
1. Anthony Esposito Fluid Power with applications:, 5 edition pearson education, Inc. 2000, ISBN: 9780130102256											

De	Department of Mechanical Engineering														
2.	Andrew Parr Pneumatics and Hydra	auli	cs:	Jaic	o P	ubl	ishi	ng	Co.	1 st	Edi	tio	n, 2	000, I	SBN:
Dof	proneo Books														
1	S R Majumdar Oil Hydraulic System	me	Drir	ncin	160	and	М	aint	ena	nce	$\cdot 20$	02	Та	ta Me	Graw
1.	Hill	1115	1 1 1 1	icip	105	anu	. 1916	ann	CIIa		. 20	102,	1 a		Ulaw
	publishing company Ltd. 2001, I	SBI	N: 9	780	071	1400	569	7							
2.	9780071359658														
3.	. Pippenger Hicks Industrial Hydraulics: McGraw Hill, New York, 2 nd Edition, 1980,														
	ISBN:														
	9780070664777														
4.	Dr. H D Ramachandra Hydraulics and Pneumatics Sudha Publications-2013														
1	Co	urs	e O	utc	om	es									
Afte	er learning all the units of the course,	he	stuc	lent	is a	able	to;								
1.	Derive Pascal's law. Explain Linea	r H	[ydr	auli	c A	Actu	atoı	rs [e	cyli	nde	rs],	Hy	dra	ulic R	otary
	Actuators and hydraulic motor performance	rma	nce	•											
2.	Explain Cylinder synchronizing ci	ircu	its,	spe	eed	co	ntro	l o	f h	ydr	auli	с с	ylir	nder, s	speed
	control of hydraulic motors, accur	nula	ator	s ai	nd	acci	umu	ilate	or o	circ	uits	Di	scu	ss: D	ouble
	nump Hydraulic system Counter Balance Valve application Hydraulic cylinder														
	sequencing circuits. Locked cylinder using pilot check valve														
3	Explain Hydraulic oils Desirable properties general type of fluids sealing devices														
5.	reservoir system Describe the shoi		f m	orla	gt ina	mo	ar i Jirr	ype n a	hor		ariat	, st 	of	ng uc	vices,
	is Structure of Describe the choice		1 W	OIK	ing 11	ine	JIUI	II, C	nai			.105	01 0		esseu
	air. Structure of Pheumatic control	sy	sten	n c	yiin	aer	WC	orkii	ng (ena	po	SIL1	on	cusnio	ning,
	seals, mounting arrangements applic	at10	ns.												
4.	Explain : poppet valves, slide valv	ves	spo	loc	val	ve,	sus	sper	ndec	1 S	eat	typ	e s	lide v	valve.
	Describe : Direct and indirect actuat	ion	of	pne	uma	atic	cyl	ind	ers,	Flo	OW (con	trol	valve	s and
	speed control of cylinders supply a	ir t	hro	ttlin	ig a	nd	exh	aus	t ai	r th	nrot	tling	g us	se of o	quick
	exhaust valve.														
	Describe Cascading method princip	le. l	Prac	ctica	al ap	ppli	cati	on e	exai	npl	es (up	to tv	WO	
	cylinders) using cascading method (usir	ng r	eve	rsin	g va	alve	s). [Pro	duc	tion	of	con	npress	ed
	air compressors, preparation of com	pres	ssec	l air	-Dr	iers	, Fi	lter	s, R	egu	ilato	ors.	Luł	oricato	ors,
	Distribution of compressed air-Pipir	ıg la	ayo	ut.											
	Course	Art	icu	lati	on 1	Ma	trix								
					Pro	gra	m	Out	con	nes				PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
	CO1	2			1						2			-	-
	CO2	1		3				2						-	1
	CO3			1		3				2				-	1
	CO4		1				3		2					-	1
	CO5	1			3							2		-	1

Course Title: Theory of Plasticity											
Course Code: P15ME743 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03											
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%											
Course Objectives: To provide a basic understanding of the plasticity theory as applied to											
metalworking processes and their analysis for improved quality and productivity.											
Course Content											
UNIT-I											
Fundamental of elasticity: Concept of stress, Equilibrium equation stress transformation											
laws, spherical and deviator stress tensors, octanedral stresses. Concept of strain,											
transformation laws, octahedral strains, elastic strain energy, theories of strength Numerical											
10 Hrs											
IINIT-II											
Plastic deformation of metals: Crystalline structure in metals, mechanism of plastic											
deformation, factors affecting plastic deformation, strain hardening, recovery.											
recrystallization and grain growth, flow figures (Luder's lines).											
Yield Criteria: Introduction, yield or plasticity conditions Tresca and Von-Mises criteria,											
experimental evidence for yield criteria (a) Lode's experiment (b) Quinney's experiment. The											
Haigh-Westergaard stress space. Traces of the yield surfaces in 2D stress space. 10 Hrs											
UNIT-III											
Stress- Strain relations: Introduction, types of materials, empirical equations, theories of											
plastic flow, experimental verification of St Venant's theory of plastic flow, the concept of											
plastic potential, the maximum work hypothesis. 10 Hrs											
UNIT-IV											
Slip Line Field Theory: Introduction, basic equations for incompressible two dimensional											
now, continuity equations (Geininger equation), stresses in conditions of plain strain,											
properties of slip lines, construction of slip line nets											
UNIT_V											
Bending of Beams . Introduction analysis of stresses Non-linear stress-strain curve shear											
stress distribution. Residual stresses in plastic bending. Numerical.											
Torsion of bars: Introduction, plastic torsion of a circular bar, Elastic- perfectly - plastic											
material, Elastic work hardening material, Residual stresses and Numerical.											
12Hrs											
Text Books											
1. Sadhu Singh, Theory of Plasticity & Metal Forming Processes, Khanna Publishers, 3 rd Edition ,2015, ISBN: 9788174090509											
2. R. A. W. Slater, Engineering Plasticity: Theory and Application to Metal Forming Processes, McMillan Press Ltd, 1 st Edition, 1977, ISBN: 9780333157091											
Reference Books											
1. J. Chakraborty, Theory of plasticity, Butter-Heinemann publisher, 3 rd Edition, 20 August											
2007, ISBN: 9789380931715											
2. Jacob Lubliner, Plasticity Theory, Dover publications Inc, 1 st Edition, 2008,											
ISBN:9780486462905											
3. Avitzur, B., Metal Forming Processes and Analysis, McGraw-Hill, 1 st Edition, 1968,											
ISBN : 9780070025103											
4. L. M. Kachanov, Fundamentals of the Theory of Plasticity, Dover Publication, 1 st											
Edition,2004, ISBN: 9/80486435831											
After learning all the units of the course, the student is able to:											
1 Derive the equation for stress transformation subarical deviator octahedral stresses and											
1. Derive the equation for stress transformation, spherical, deviator, octaneural stresses and											

strains, and **calculate** the same.

- 2. **Explain** factors affecting plastic deformation, strain hardening, recovery, recrystallization, cubical dilation, and true stress and strain. **Calculate** Yield stress
- 3. **Explain** St Venant's theory of plastic flow.
- 4. **Derive** basic equation for incompressible two dimensional flows, continuity equation and **explain** geometry of slip line field, properties of the slip lines.
- **5. Explain** non linear stress strain curve, shear stress distribution, residual stresses in plastic bending, and plastic torsion of circular bar and **calculate** residual stresses.

	Course Articulation Matrix														
					Pro	gra	m	Ou	tco	me	5			PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Derive the equation for stress transformation, spherical, deviator, octahedral stresses and strains, and calculate the same.	3	2											1	-
CO2	Explain factors affecting plastic deformation, strain hardening, recovery, recrystallization, cubical dilation, and true stress and strain. Calculate Yield stress.	3	2			1								2	-
CO3	Explain St Venant's theory of plastic flow.	3	2	1									1	1	-
CO4	Derive basic equation for incompressible two dimensional flows, continuity equation and explain geometry of slip line field, properties of the slip lines.	3	2	2	2	1							1	-	-
CO5	Explain non linear stress strain curve, shear stress distribution, residual stresses in plastic bending, and plastic torsion of circular bar and calculate residual stresses.	3	3	2	3	2				1			2	-	-

Course Title: Gas Turbines
Course Code: P15ME744 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The objectives of the course are to develop the students ability to
understand the thermodynamics of each component, the linked system performance of al
components in the Gas turbine engine and performance trends for each component which
include compressors, burners, turbines regenerator.
Course Content
UNIT-I
Ideal plant cycles: Introduction, Carnot cycle, Stirling cycle with regenerator, Ericsson
cycle, Joule air cycle, Brayton cycle with regenerator, complex cycles, The closed cycle
Operating media other than air,
flow losses Heat exchanger effectiveness Effect of verying mass flow. Loss due to
incomplete compustion Machanical losses. Effect of varying mass now, Loss due to
fuel consumption and cuele efficiency. Delutronic efficiency. Derformance of actual cuele. Is
ruer consumption and cycle efficiency, Polytropic efficiency, Performance of actual cycle, Je
Propulsive efficiency Effect of forward speed Effect of altitude Numerical examples 10Hrs
UNIT-II
Centrifugal compressors: Components Method of operation Theory of operation Idea
energy transfer Actual energy transfer- Slip Analytical method of finding slip factor Powe
input factor Pressure coefficient Compressor efficiency Inlet or inducer section- when the
entrance is axial sizing of inducer section Prewhirl Impeller passage- Effect of impelle
blade shape on performance. The impeller channel. The compressor diffuser. Losses in
centrifugal compressor. Compressor characteristic. Surging and choking
Axial flow compressor: Introduction. Description. Performance analysis. Momentum o
filament analysis – Spatial velocity diagram. Symmetric stage. Non-symmetric axial inflow
Non-symmetric axial out flow. Actual energy transfer. Airfoil analysis - One dimensiona
ideal incompressible flow, Two dimensional flow with friction. Blading efficiency – Losse
in terms of air angles and drag coefficient. Coefficient of performance- flow coefficient
Pressure coefficient, Work coefficient. Blade loading, Cascade characteristic, Blade angles
Reynolds and Mach number effects. Compressor stall and surge, overall performance
Compressor characteristics. Numerical examples. 12 Hrs
UNIT-III
Combustion systems: Introduction, Combustion mechanism, Pressure losses, Combustion
intensity, Combustion efficiency, Requirement of Combustion chamber, Shape of the
combustion chamber, Stabilizing or primary zone, Dilution and mixing, Combustion chamber
arrangements, Fuel injection system
Regenerator: Introduction, Types of regenerator, Heat transfer in direct type exchangers
Exchanger heat transfer effectiveness, Number of exchanger heat transfer units, Capacity
ratio, Relation between NTU and Stanton number, Relations between NTU and
effectiveness(no derivation), Effect of flow arrangement, Effect of $C_{min}/C_{max} < 1$ for
regenerator, Log mean rate equation compared to effectiveness -NTU approach. Rotary hea
exchanger- Effect of Matreix speed, Effect of longitudinal conduction, Core pressure drop
Some economics approach of heat exchanger design. Numerical examples. 10 Hrs
UNIT-IV
Axial flow gas turbines: Introduction, Turbine and nozzle efficiencies. Degree of reaction
impulse turbine, ideal impulse turbine, impulse turbine with loss, Blade speed ratio, Velocity

ratio and torque, Velocity compounded turbine. The reaction turbine- Reheat factor, Blade speed ratio for reaction turbine. Comparison of turbine types, Forces on blade, Cascade analysis, Three dimensional flow analysis – The free vortex blades, Constant angle nozzle

Department of Mechanical Engineering															
stage.	Turbine flow passage- Impulse blading	g, R	eact	tion	bla	din	g. T	`urb	ine	cha	rac	teri	stics	5.	
10 Hrs															
	U	NIT	-V		_		_								
Perfo	rmance of Gas turbine power plant	: No	on c	lim	ensi	ona	l re	pre	sen	tatio	on o	of c	om	pres	sor
and t	urbine performance, Performance	cha	arac	teri	stic	S (ot i	con	npre	esso	or	and	tı	irbi	nes
compr	essors, Matching of compressor and	tur	bin.	e II	1 a	sel	t di	r1V11	ng	syst	tem	, Е	quil	ıbrı	um
runnin Effect	g of simple jet and propeller turbine	en	gine	es, i	Sim	pie	jet	un	lt, I	10ZZ			ract	eris	tic,
Effect	of adding a propering nozzle to the		mp of	ress	or .:f:	urt	onne	co	moi	inat	ion,	ة V .		.101	10
unrust	speed and rpm, Discussion on the equilibrium running diagram ,Propeller turbine														
speed	and Ipili, Discussion on the equ	uno	niui	.11	lum	11112	g u	lagi	lam	, r	Top	ene	51 (uro	me
Engine	Environmental consideration: Air pollution, Aircraft emission standards, Stationary engine														
emission standards, NO_x formation, NO_x reduction in stationary engines, Noise. Noise															
emission standards, NO_x formation, NO_x reduction in stationary engines, Noise, Noise standards Noise reduction 10 Hrs															
Text B	noks														15
1 P.R. Khaiuria and S. P. Dubey Gas Turbines and Propulsive System Dhannat Rai															
Publication, 2012, ISBN: 9788189928483															
2. V Ganeshan, Gas Turbines McGraw –Hill Publication. 3 rd Edition. 2010.															
ISBN: 9780070681927															
Reference Books															
1. H. I. H Saravanamutto, GFC Rogers, H Cohen, Gas Turbine Theory, Pearson Education,															
5 th Edition, 2001, ISBN: 9788178085340															
2. Turbines Compressor and Fans, S. M. Yahya, Tata McGraw-Hill Publication, 4 th Edition,															
29 October 2010, ISBN: 9780070707023															
<u>Course Outcomes</u>															
After learning all the units of the course, the student is able to;															
1. A	nalyze and predict the cycle performan	ice (of g	as t	urbi	ne	engi	ines	5.						
2. So	blve the problem for aircraft propulsion	ı sys	sten	ns, 1	ın p	artı	cula	r ga	as ti	lrb1	ne e	engi	nes	•	
3. A	nalyze and predict the performance of	com	ipre	SSO	rs, t	urb	ines	s, ar	nd c	om	busi	tion	sys	tem	1.
4. A	ppiy the dimensionless parameters invo	01V1	ng (11116	eren	it Vä	iria	bies	m	prec	IICU	ing	the		
	nderstand the environmental aspects of	ι. f σae	s fui	rhin	66										
5. 0	Course Arti	cul	atio	n N	latı Isti	rix									
					Pro	gra	m (Out	tcor	nes				P	50
	Course Outcomes	1	2	2				7	0	0	10	1 1	10	01	00
		1	2	3	4	С	6	/	8	9	10	11	12	01	02
CO1	Analyze and predict the cycle	2	2	2.							2.			_	-
	performance of gas turbine engines.	_	_	-											
	Solve the problem for aircraft			-											
	propulsion systems, in particular	2	2	2							2			-	-
	gas turbine engines.														
	Analyze and predict the performance	2	2	r							2				
COS	combustion system	4	4	4							4			-	-
	Apply the dimensionless														
	parameters involving different														
CO4	variables in predicting the	2	2	2							2			-	-
	performance of a gas turbine power														
	plant.														
COF	Understand the environmental						2	2							
05	aspects of gas turbines.						4	4						-	-

Course Title: Total Quality Management (open Elective-I)											
Course Code: P15ME751 Semester: VII L-T-P-H: 3-2-0-5 Credits: 03											
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%											
Course Objectives: The course aims at enabling the students to understand the basic											
concepts of TQM. Identify and develop appropriate tools solving of real life problems.											
Course Content											
UNIT-I											
Introduction: Introduction, Definition, Basic approach, Gurus of TQM, Awareness,											
Defining Quality, Historical Review, Obstacles, Benefits of TQM, TQM Exemplary											
Organization, Exercises.											
Leadership: Definitions, Characteristics of Quality Leaders, Leadership Concepts, The 7 Habits of Highly Effective People, Ethics, The Deming Philosophy, Pole of TOM Leaders											
Habits of Highly Effective People, Ethics, The Deming Philosophy, Role of TQM Leaders,											
Implementation, Quality Council, Core Values, Concepts and Framework, Quality											
Statements, Strategic Planning, Communications, Decision Marking, IQM Exemplary											
UNIT II											
UNIT-II Customer Satisfaction: Introduction Who is the Customer? Customer Percention of											
Quality Eardback Using Customer Complaints Service Quality Translating Needs into											
Requirements Customer Retention Additional Comments TOM Exemplary Organization											
Exercises											
Continuous Process Improvement . Introduction Process The Juran Trilogy Improvement											
Strategies Types of Problems The PDSA Cycle Problem Solving Method Kaizen											
Reengineering Six-Sigma TOM Exemplary Organization Exercises 10 Hrs											
UNIT-III Benchmarking: Introduction, Benchmarking Defined, Reasons to Benchmark, Process, Deciding What to Benchmark, Understanding Current Performance, Planning, Studying Others, Learning from the Data, Using The Findings, Pitfalls and Criticisms of Benchmarking, TQM Exemplary Organization, Exercises. Quality Management Systems: Introduction, Benefits of ISO Registration, ISO9000 Series of standards, Sector-Specific Standards, ISO 9001 Requirements, Implementation, Documentation, Writing the Documents Internal Audits, Registration, Closing Comments, TQM Exemplary Organization, Exercises. 10 Hrs											
UNIT-IV											
Environmental Management System: Introduction, ISO14000 Series Standards, Concepts											
of ISO 14001, Requirements of ISO 14001, Benefits of EMS, Integrating ISO 14000with											
ISO9000, Relationship to Health and safety Additional Comments, TQM Exemplary											
Organization, Exercises.											
Statistical Process Control: Introduction, Pareto Diagram, Process Flow Diagram, Cause-											
and-Effect Diagram, Check Sheets, Histogram, Statistical Fundamentals, Introduction to											
Control Charts, State of Control, Out of Control Process, Process Capability, Different											
Control Charts for Variables, Control Charts for Attributes, scatter Diagram, Summary, IQM											
Exemplary Organization Exercises. IO Hrs											
UNIT-V											
Quality Function Deployment: Introduction, The QFD Team, Benefits of QFD, The Voice											
of the Customer, Organization of Information, House of quality, QFD Process, Examples,											
Conclusion, IQM Exemplary Organization, exercises.											
Quality by Design. Introduction Pationale for Implementation Banefits Teams											

Quality by Design:Introduction, Rationale for Implementation Benefits, Teams,
Communication Models, Implementation, Tools, Misconceptions and Pitfalls, TQM
Exemplary Organization Exercises.10 Hrs

Text Books

1. Total Quality Management. Dale H. Besterfield et al. Pearson Publishers, New Delhi.

2.TQM. V K Khanna et al. New Age International Publishers, New Delhi.

Reference Books:

1. Total Quality Management. Dr.S Kumar. Laxmi Publications, New Delhi.

Course Outcomes

- 1. Tell who are all the Gurus of TQM, Define Quality, Leadership Concepts.
- 2. Explain Customer, Customer Perception of Quality, Juran Trilogy, PDSA Cycle.
- 3. Develop Benchmarking process, Make use of ISO Registration
- 4. Analyse ISO14000 Series Standards. Categorise SPC tools.
- **5. Build** QFD team and QBD

Course Articulation Matrix															
	Course Outcomes			PSO											
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
	Tell who are all the Gurus of														
CO1	TQM, Define Quality,		3	3											
	Leadership Concepts.														
	Explain Customer, Customer														
CO2	Perception of Quality, Juran					3									
	Trilogy, PDSA Cycle														
	Develop Benchmarking														
CO3	process, Make use of ISO										3				
	Registration														
	Analyse ISO14000 Series														
CO4	Standards. Categorise SPC				3										
	tools.														
CO5	Build QFD team and QBD									3					

Course Title: Operations Research (Open Elective-I)											
Co	rse Code: P15ME752 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03										
Co	tact Period - Lecture: 52 Hrs, : Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%										
Со	rse Objectives: The course aims at enabling the students to understand the basic										
cor	cepts of Operations Research. Identify and develop operation research models from the										
ver	al description of real life and optimize the solutions.										
	Course Content										
-	UNIT-I										
Int	oduction: Definition, scope of Operations Research (O.R) approach and limitations of										
OR	Models, Characteristics and phases of OR Mathematical formulation of Linear										
pro	gramming problems. Graphical solution for maximization and minimization problems.										
	INIT_II										
Liı	ear Programming Problems. Simplex method – slack surplus and artificial variables										
De	eneracy and procedure for resolving degeneracy Big M method. Two phase method										
Du	l simplex method.										
20	UNIT-III										
Tr	nsportation Problem: Formulation of transportation model, Basic feasible solution using										
dif	erent methods, Optimality Methods, Unbalanced transportation problem, maximization										
and	minimization problems. Degeneracy in transportation problems, Applications of										
Tra	nsportation problems. 10 Hrs										
	UNIT-IV										
Ne	work Analysis in Project Planning (PERT AND CPM): Project, Project planning,										
Pro	ect scheduling, Project Controlling, Network terminologies, PERT and CPM. (Excluding										
cra	hing of networks.). 10 Hrs										
	UNIT-V										
Ga	ne Theory: Introduction to game theory, Terminologies used in game theory,										
For	nulation of games, Different strategies of games, Two people-Zero sum game, Games										
wit	and without saddle point, Algebraic method of solving games of 2 X 2 matrix, Graphical										
sol	tion (2 x n, m x 2 game) and dominance property. 10 Hrs										
Tev	Rooks										
1	Taba H A Operations Research and Introduction Pearson Education edition										
2.	Operation Research. Prem Kumar Gupta, D.S. Hira, S Chand Pub.New delhi. 2011										
Ref	rence Books										
1.	Operation reaseach AM Nataraian, P. Balasubramani , A Tamilarayari Pearson 2005										
2	Introduction to operation research Hiller and liberman Mc Graw Hill 5 th edition										
2.	2001										
3	Operations Research Principles and practice: Ravindran Phillips & Solberg Wiley										
5.	India lts 2 nd edition 2007										
1	S.D. Sharma Operations Research Kedarnath Ramnath & Co 2002										
7.	S.D. Sharma Operations Research, Redaman Rannaul & Co 2002.										
Δfte	Learning all the units of the course, the student is able to:										
1	Identify and develop operation research models from the verbal description of real life										
1.	Tuentify and develop operation research models from the verbal description of real file.										
2.	Analyse the problem using mathematical tools and simple queue system.										
3.	Describe the model and the solving technique to analyze the results and propose										
4.	Solve Transportation and Assignment problem using different methods.										
5.	Explain the game theory with their characteristics and Solve problems.										

Course Articulation Matrix																
	Course Outcomes				Pro	ogra	am	Ou	tco	me	s			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Identify and develop operation research models from the verbal description of real life.	3			3	3								-	-	
CO2	Analyse the problem using mathematical tools and simple queue system.	2												-	-	
CO3	Describe the model and the solving technique to analyse the results and propose recommendation.					3								-	-	
CO4	Solve Transportation and Assignment problem using different methods.					2								-	-	
CO5	Explain the game theory with their characteristics and Solve problems.					2								-	-	

Deput thient of Freehuneur Engineering										
Course Title: Renewable Energy Technology (Open Elective-I)										
Course Code: P15ME753 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03										
Contact Period - Lecture: 52 Hrs, : Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%										
Course Objectives: The course aims at strengthening the design capabilities of the students										
by exposing them to the design of different mechanical elements that are commonly used in										
machines.										
Course Content										
UNIT-I										
INTRODUCTION: Energy source, India's production and reserves of commercial energy										
sources, need for renewable energy sources, solar, photovoltaic, water power, wind, bio-										
mass, ocean temperature difference, tidal and waves, geothermal (Qualitative and										
Quantitative).										
SOLAR RADIATION: Extra-terrestrial radiation, spectral distribution of extra-terrestrial										
radiation, solar constant, solar radiation at the earth's surface, beam and global radiation,										
solar radiation data. 09 Hrs										
UNIT-II										
SOLAR RADIATION MEASUREMENT: Pyranometer, shading ring, Pyrheliometer,										
sunshine recorder, schematic diagrams and principles of working. (no numericals)										
SOLAR RADIATION GEOMETRY: Flux on a plane surface, latitude, declination angle,										
surface azimuth angle, hour angle, zenith angle, solar altitude angle, expression for the angle										
between the incident beam and the normal to a plane surface (No derivation), local apparent										
motion of sun, day length and simple numerical. 10 Hrs										
UNIT-III COLAD THEDMAL CONVERSION: Collection and standard themes the station during										
SOLAR THERMAL CONVERSION: Collection and storage, thermal collection devices,										
inquid flat plate collectors, solar air neaters, concentrating collectors (cylindrical, parabolic,										
hasting Solar hasting and cooling solar thermal newsr plant and solar pond principle of										
working solar cells and its applications										
GEOTHERMAL ENERGY CONVERSION: Principle of working types of geothermal										
station with schematic diagram geothermal plants in the world problems associated with										
geothermal conversion, scope of geothermal energy 11 Hrs										
UNIT-IV										
WIND ENERGY: Availability of wind energy in India, wind machines: Types of wind										
machines and their characteristics, horizontal and vertical axis wind mills, problems										
associated with wind power.										
TIDAL POWER: Tides and waves as energy suppliers and their mechanics, harnessing tidal										
energy, limitations.										
OCEAN THERMAL ENERGY CONVERSION: Principle of working, Rankine cycle,										
problems associated with OTEC. 10 Hrs										
UNIT-V										
ENERGY FROM BIOMASS: Biomass conversion Technologies, Photosynthesis,										
photosynthetic oxygen production, energy plantation, biogas production from organic wastes										
by anaerobic fermentation, description of biogas plants (KVIC digester), problems involved										
with biogas production, application of biogas in engines, advantages.										
HYDROGEN ENERGY : Properties of Hydrogen with respect to its utilization as a										
renewable form of energy sources, production of hydrogen, electrolysis of water, thermal										
decomposition of water, thermo chemical production and bio-chemical production. 10 Hrs										
Text Books										
1. G.D Rai K, "Non conventional energy sources", Khanna publishers.2004,										
15 DIN: 9 / 881 / 4090 / 3 /										

 Subhas P.Sukhatme, J K Nayak, "Solar energy", Tata Mc Graw Hill, India 3rd Edition. 2009, ISBN: 9780070142961

Reference Books										
1.	N.K.Bansal, Manfred Kleeman and Mechael meliss, "Renewable energy sources a	ınd								
	conversion technology", Tata Mcgraw Hill, 2001. ISBN:9780074600238									
2.	John W.Twidell, Tony Weir, "Renewable energy resources", Routledge, 4th edition	on,								
	2014, ISBN:9780415633581									
	Course Outcomes									
1.	After learning all the units of the course, the student is able to;									
	Identify production and reserves of commercial energy sources in India and Evaluation	ate the								
	availability of solar radiation.									
2.	Analyse solar energy with the help of solar radiation measuring instruments and E	xplain								
	the angles related to solar radiation geometry.									
3.	Analyse and design solar collectors for harnessing solar energy. Discuss characte	ristics								
	of geothermal energy.									
4.	Explain different types of wind mills and their design principles. Compute coefficient	ient of								
	performance of wind mill. Discuss characteristics of tidal energy, ocean thermal energy	ergy.								
5.	5. Discuss characteristics of biomass energy and Describe the methods of production of									
	hydrogen for utilization as a renewable form of source of energy.									
	Course Articulation Matrix									
	Program Outcomes	PSO								

Course Articulation Matrix															
			1	1	Pı	rogr	am	Out	con	nes		1	1	PS PS	<u>50</u>
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Identify production and reserves of commercial energy sources in India and Evaluate the availability of solar radiation.		1	2		2		3					3	-	-
CO2	Analyse solar energy with the help of solar radiation measuring instruments and Explain the angles related to solar radiation geometry.	3	3	2										-	-
CO3	Analyse and design solar collectors for harnessing solar energy. Discuss characteristics of geothermal energy.	3	1	3							2			-	-
CO4	Explain different types of wind mills and their design principles. Compute coefficient of performance of wind mill. Discuss characteristics of tidal energy, ocean thermal energy.	3									3			-	-
CO5	Discuss characteristics of biomass energy and Describe the methods of production of hydrogen for utilization as a renewable form of source of energy.										3		3	-	-

Course Title: Finite Element Method in Engineering (Open Elective-I)
Course Code: P15ME754 Semester: VII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The course aims to provide an introductory approach to finite element
method as a basic numerical tool for solving mechanical engineering problems.
Course Content
UNIT-I
INTRODUCTION TO FEM: Need for use of FEM, Advantages and disadvantages of FEM,
Engineering Applications of FEM, Steps involved in FEM, Discretization process – types of
elements (1D,2D,3D), size of the elements, location of nodes, node numbering scheme, Body
force and surface force, equilibrium equations of a body subjected to body force and traction
force, strain- displacement relations, stress-strain relations, concept of plane stress and plane
strain and their stress-strain relations. Principle of minimum potential energy and derivation
of potential energy functional for a 3D elastic body. 10 Hrs
UNIT-II
INTERPOLATION MODELS: Displacement function, selection of the order of
displacement function, convergence criteria, geometric isotropy, Pascal's triangle for 2D
polynomial, Different co-ordinate systems used in FEM. Interpolation or shape functions for
1D linear bar elements and 2D linear triangular (CST) element in Cartesian and natural co-
ordinate systems. Lagrangian polynomial – Shape functions for linear quadrilateral element
(QUAD 4). Iso-parametric, sub-parametric and super-parametric elements, Concept of
Jacobian matrix, Jacobian matrix for CST element. 11 Hrs
UNIT-III
ELEMENT STIFFNESS MATRIX AND LOAD VECTORS : Strain displacement matrix,
Stiffness matrix and load vector for linear bar element. Strain displacement matrix and
Stiffness matrix for CST element. Assembly of elements by direct stiffness method, special
characteristics of stiffness matrix. Treatment of boundary conditions- elimination and penalty
methods. Analysis of axially loaded uniformly tapered and stepped bars. 12 Hrs
UNIT-IV
ANALYSIS OF PLANE TRUSSES: Introduction, local and global coordinate systems,
transformation matrix, stiffness and stress matrices for plane truss element, analysis of truss
members. 8 Hrs
UNIT-V
ANALYSIS OF BEAMS: Introduction, Hermite shape function for beam element in
Cartesian coordinates, Stiffness matrix and load vector for beam element, and analysis of
beams.
ANALYSIS OF HEAT TRANSFER PROBLEMS: Steady state heat transfer, 1D heat
conduction- governing equation, boundary conditions, one-dimensional element, Galerkin's
approach to heat conduction problems, numericals on 1D heat transfer through composite
wall. 11Hrs
Text Books
1 Chandrakanth S Desai and J.F. Abel, "Introduction to the Finite Element Method,"
CBS, 1 st edition, 2005, ISBN: 978-8123908953.
2 T R Chandrupatla and A D Belegundu, "Introduction to Finite Elements in
engineering," Pearson, 4 th edition, 19 th October 2011, ISBN: 978-0132162746.
3 Singiresu S Rao, "The Finite Element Method in engineering," Elsevier Publisher, 5 th
edition, 2008 ISBN: 978-9380931555.
Reference Books
1 O.C.Zienkiewicz, "The FEM its basics and fundamentals." Elsevier Publisher 6 th
edition. 2007. ISBN: 978-8131211182

2 J.N.Reddy, "Finite Element Method," McGraw Hill International Edition, 2005, ISBN:

9780072466850.

- 3 Daryl. L. Logon, **"Finite Element Methods,"** Thomson Learning 5th edition, 1st Jan 2011, ISBN: 978-0495668251.
- 4 David V. Hutton, **"Fundamentals of Finite Element Analysis,"** Tata McGraw Hill Publishing Co. Ltd, New Delhi, 10th June 2005, ISBN: 978-0070601222.

Course Outcomes

- 1. **Understand** the basic concepts and mathematical preliminaries of FEM required to solve basic field problems.
- 2. **Develop** interpolation models for 1D and 2D elements that satisfy convergence criteria and geometric isotropy and **use** isoparametric concept in the finite element analysis.
- 3. **Formulate** element stiffness matrices and load vectors for different elements using variational principle and **analyze** axially loaded bars.
- 4. Use finite element formulations in the **determination** of displacements, stresses, and support reactions of trusses.
- **5.** Use finite element methods to solve beam problems and 1D steady state head transfer problems.

Course Articulation Matrix																
					Pro	gra	m (Out	tco	me	5			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Understand the basic concepts and mathematical preliminaries of FEM required to solve basic field problems.	3	2	2	2	1							1	2	-	
CO2	Develop interpolation models for 1D and 2D elements that satisfy convergence criteria and geometric isotropy and use isoparametric concept in the finite element analysis.	3	3	3	2	2	1						2	3	-	
CO3	Formulate element stiffness matrices and load vectors for different elements using variational principle and analyze axially loaded bars.	3	3	3	2	3	1						2	3	-	
CO4	Use finite element formulations in the determination of displacements, stresses, and support reactions of trusses.	3	3	3	2	3	2						3	3	-	
CO5	Use finite element methods to solve beam problems and 1D steady state head transfer problems.	3	3	3	3	3	2				-		3	3	-	

Course Title: Design Lab											
Course Code: P15MEL76Semester: VIIL-T-P-H: 0-0-3-3Credits: 1.5											
Contact Period - Lecture: 36 Hrs. ; Exam:3Hrs. Weightage: CIE: 50 %;SEE: 50%)										
Course Objectives: This course enables the students to understand the basic concepts	of										
in Journal bearing	1011										
Course Content											
Part A											
1. Determination of natural frequency of single DOF undamped spring-mass free vibrat system.	ion										
2. Determination of natural frequency of single DOF undamped equivalent spring-mass ribration system.	ree										
3. Study of single DOF damped torsional free vibration system.											
4. Study of forced vibration of single DOF equivalent spring - mass - damper system											
5. Determination of natural frequency by Dunkerley's principle											
6. Determination of critical speed of a rotating shaft.											
7. Determination of vibration characteristics of rotor.											
Part B											
1 Determination of Fringe constant of Photo elastic material using a Circular disc subjected to diametral compression.											
2. Determination of stress concentration using Photo elasticity for a circular disk with circula hole under compression	r										
3. Performance study of governors.											
4. Determination of a Pressure distribution in Journal bearing											
5. Determination of Principal Stresses and strains in a member subjected to combined loading using Strain rosettes.	5										
6. Determination of gyroscopic torque in a Gyroscope.											
Reference Books											
1. V.P. Singh, Mechanical Vibrations, Dhanpat Rai & Co (P) Ltd., ISBN: 123456715020	9										
2. S.S. Rattan, Theory of Machines, Tata McGraw-Hill, New Delhi, 4th edition, 2015, ISB	N:										
9789351343479.											
<u>Course Outcomes</u>											
After learning all the units of the course, the student is able to;											
1. Apply principles of vibration and determine vibration characteristics of simple single degree of freedom systems experimentally.											
2. Determine critical speed of shaft experimentally.											
3. Demonstrate the basic principles of photoelasticity. Determine experimentally, stress concentration using polariscope.											
4. Demonstrate experimentally pressure distribution in journal bearings.											
5. Demonstrate the working principles of Governors and Gyroscope.											
6. Determine experimentally, stresses induced in a cantilever beam subjected to combined bending and torsion, using strain rosette.											

	Cour	se A	rtic	ulat	ion 1	Mat	rix								
					Pı	rogr	am	Out	com	es				PS	60
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Apply principles of vibration and determine vibration characteristics of simple single degree of freedom systems experimentally.	1	2		3					2	2			-	1
CO2	Determine critical speed of shaft experimentally.	1	2		3					2	2			-	1
соз	Demonstrate the basic principles of photoelasticity. Determine experimentally, stress concentration using polariscope.	2	2		3					2	2			-	-
CO4	Demonstrate experimentally pressure distribution in journal bearings.		2		3					2	3			-	1
CO5	Demonstrate the working principles of Governors and Gyroscope.		2		3					1	1			-	-
CO6	Determine experimentally, stresses induced in a cantilever beam subjected to combined bending and torsion, using strain rosette.		2		3					2	2			-	-

Course Title: Simulations Lab															
Cour	rse Code: P15MEL77 Semester: VII	L-T	`-P-	H:	0-0	-3-	3	(Cre	dit	s: 1	.5			
Cont	act Period - Lecture: 36 Hrs. ; Exam: 3Hrs.		We	igh	itag	e: (CIE	: 5() %	;		S	SEE	: 50	%
Cou	rse Objectives: This course enables the	ne	stuc	len	ts	to	sim	nula	te	Tu	rni	ng,	D	rilli	ng,
Milli	ing/Cutting operations using simulation pac	kag	ges,	to	bui	ld h	iydr	aul	ic c	circ	uits	s us	ing	sin	gle
actin	g cylinder and double acting cylinder and	l to	gei	nera	ate	res	pon	se j	plo	t of	t co	ontr	ol	syst	em
using	g MAILAB	1													
	Course Content														
1 N	rari Indeling of simple machine parts and ger	-A	tine	r m	hack	nine		dec	fc	or (٦NI	с r	roc	huet	ion
1. 10	sing standard CAM packages	icia	ιmε	5 11.	laci	mit		ucs		<i>л</i> (_11		лос	iuci	IOII
2 Si	2. Simulation of Turning, Drilling, Milling/Cutting operations on a Computer using CAM														
packages.															
3. Th	3 Three typical simulations to be carried out using simulation packages like Master CAM or														
a	ny equivalent software.	0				r							2	1 H	rs
	Part	- B													
4. D	esign and building of hydraulic circuits us	sing	sir	ngle	e ac	ting	g cy	ylin	der	an	d d	lou	ble	acti	ing
c	ylinder and its analysis.	-		-											-
5. U	nit-step response plot of control system us	sing	g M	AT	'LA	В,	for	(i)	its	op	en	loc	p t	rans	fer
fı	unction and (ii) its state-space equation and	l to	det	erm	nine	ris	e ti	me,	, pe	eak	tim	ne,	max	xim	um
0	vershoot and settling time in the unit-step re	espo	onse	e pl	ot.										
6. R	bot locus plot, Bode plot and Nyquist plot	of c	ont	rol	sys	tem	is u	sing	g M	IA.	ΓLA	AB,	, fo	r (i)	its
open	loop transfer function and (ii) its state-space	ce e	qua	tio	1.								1	5 H	lrs
Reference Books															
1. P.N. Rao, CAD/CAM Principles and Application, Tata McGraw Hill, 3 rd edition, 2010,															
ISBN: 00/0681937.															
Ζ.	2003	er A	410	ea .	wa	nui	acti	1111	g,	Tat	an		Jrav	wп	
2	2003. Rao V Dukkinati Control Systems Na	rose	ъР	hihl	ich	inσ	Н	20156	ь [,]	200)8	IS	RN	· gʻ	78_
5.	8173195549	1050	. 1	uu	1511	mg	110	Just	-, .	200	,0,	10	DIN	.)	/0-
	Course Or	utco	me	es											
After	learning all the units of the course, the stud	ent	is a	ble	to;										
1.	Create solid model of simple machine parts	s us	ing	Ma	iste	r C	AM	[pa	cka	ige.					
2.	Show simulation of Turning, Drilling, Milli	ng	usir	ng s	oft	war	e	•		U					
3.	Develop MATLAB programs to plot step-re	espo	onse	e cu	irve	e an	d de	eter	mi	ne t	ran	sie	nt		
	response specifications.														
4.	Develop MATLAB programs to draw root	locu	ıs, İ	Nyc	luis	t ar	nd E	Bode	e pl	lots	of	coi	ntro	l	
	systems.														
	Course Articul	atio	on I	Ma	trix	5									
	Course Outcomes	1			Pro	gra ~	m (Out		me	5	1.1	10	PS 01	<u>50</u>
		1	2	3	4	5	6	7	8	9	10	П	12	01	02
CO1	Create solid model of simple machine		2	1	3	2				3	1		1	1	-
	Show simulation of Turning Drilling							-+							
CO2	Show simulation of furning, Drining, Milling using software		2		1	2				2	1			1	-
	Develop MATLAB programs to plot														
CO3	step-response curve and determine	1	2	3		1				2	2			1	_
	transient response specifications			5						4	4			1	_
	Develop MATLAB programs to draw							-+							
CO4	root locus, Nyauist and Bode plots of	1	2	3		1				2	2			1	-
	control systems.		-							-	-			-	
L			1	1		I	11						I		

Semester:-VIII
Course Title: Industrial Robotics
Course Code: P15ME81 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs. ; Exam:3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives:
• To familiarize students with brief history of robot and basic concepts of industrial robot.
• To expose the students to kinematics of robots and programming of robot
• To make the students familiar with various applications in robots in industry
Course Content
UNIT-I
INTRODUCTION: Automation and robotics, brief history of robotics, Classifications of robots,
Geometrical configuration, Work Volume, wrist and its motions, links and joints. End
Effectors: types of grippers, tools. Resolution, Accuracy and Repeatability, Problems. 10 Hrs
UNIT-II STRUCTURE OF ROBOTIC SYSTEM. Robot drive system: Hydroulic, electric and proumatic
drive system advantages and disadvantages Feedback components: position velocity
sensors types of Actuators Internal State sensors tactile sensors - proximity sensing range
sensing force-torque sensors 10 Hrs
UNIT-III
ROBOT ARM KINEMATICS: Kinematics- Introduction, direct and inverse Kinematics, rotation
Matrix, composite rotation matrix, rotation matrix about an arbitrary axis, Euler angles
representation, homogeneous transformations D-H representation. Applications of DH
method:-Three axis robot arm, Three axis wrist. 10 Hrs
UNIT-IV
ROBOT PROGRAMMING: Introduction, manual teaching, lead through teaching, Robot
programming languages:-Generations Robot programming Languages. Robot language
control and subroutines. Programs
UNIT-V
APPLICATIONS OF ROBOTS IN MANUFACTURING: Material Transfer:- general
considerations in robot material handling, pick and place, palletizing operations. Machine
Loading & unloading: Die casting, Plastic moulding, Forging, machining and stamping press
operations. Processing Operations:- spot and arc welding, features of arc welding robot.
spray coating and other processing applications. Robotic assembly operation, Parts
presentation methods, Assembly system configurations. 10 Hrs
Text Books
1. Michell Grover, Mitchel weiss, Roger nagel "Industrial Robots", McGraw Hill 2012,
India, 2 ND edition, ISBN-13:9780070265097
2. K.S. Fu, R.C. Gonzales and Lee, " Robotics ". McGraw Hill Intl. India, 1 ⁵¹ edition, 2008
ISBN-13:9780070265103
3. Yoramn Koren, "Robotics for Engineers" Mc Graw hill Intl. Book Co., New Delhi
1987 ISBN-13:9780070353992
Reference Books
1. Robert J. Schilling, "Fundamentals of Robotics" PHI, 1 ST edition2011, ISBN-
13:9788120310476
2. Richard D. Klafter, C Thomas A. "Robotic Engineering" PHI 1993, ISBN-
13·9788120308428
3. R.K. Mittal and J. Nagarath, " Robotics and Control " Tata Mc Graw Hill, DEL HI 6 TH

Course Outcomes

After learning all the units of the course, the student is able to;

- 1. Analyze work volume, resolution, and accuracy of various configuration of robots
- 2. Identify different types of end effectors and sensors required for specific applications
- 3. Calculate the forward kinematics of robots using DH method
- 4. Develop robot task program using robot language
- 5. Discuss requirements of robot systems for various industrial applications.

	Course Articulation Matrix														
		Program Outcomes													0
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Analyze work volume, resolution, and accuracy of various configuration of robots	2	2	1	1									-	-
CO2	Calculate the forward kinematics of robots using DH method	3	2	1	1									-	-
CO3	Identify different types of end effectors and sensors required for specific applications										2		2	-	-
CO4	Develop robot program using robot languages					2					2		2	-	-
CO5	Discuss various applications of industrial robot systems.					1					2		2	-	1

Course Title: Operations Research

Course Code: P15ME821 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03

Contact Period - Lecture: 52 Hrs.; Exam:3Hrs. | Weightage: CIE: 50 %; SEE: 50% Course Objectives: The course aims at enabling the students to understand the basic concepts of Operations Research. Identify and develop operation research models from the verbal description of real life and optimise the solutions.

Course Content UNIT-I

INTRODUCTION: Definition, scope of Operations Research (O.R) approach and limitations of OR Models, Characteristics and phases of OR Mathematical formulation of L.P. Problems. Graphical solution for maximization and minimization problems. **12Hrs**

UNIT-II

LINEAR PROGRAMMING PROBLEMS: Simplex method – slack, surplus and artificial variables. Degeneracy and procedure for resolving degeneracy. Big M method, Two phase method, dual simplex method. 10 Hrs

UNIT-III

TRANSPORTATION PROBLEM: Formulation of transportation model, Basic feasiblesolution using different methods, Optimality Methods, Unbalanced transportation problem,maximization and minimization problems. Degeneracy in transportation problems,Applications of Transportation problems.10 Hrs

UNIT-IV

ASSIGNMENT PROBLEM: Formulation, balanced and unbalanced assignment problem-Hungarian method, Travelling salesman problem. 10 Hrs

UNIT-V

QUEUING THEORY: Queuing system and their characteristics. The M/M/1 Queuing system, Steady state performance analyzing of M/M/1 System.

GAME THEORY: Formulation of games, two people-Zero sum game, games with and without saddle point, Graphical solution (2 x n, m x 2 game) and dominance property. **10 Hrs Text Books**

- 1. Taha H. A **Operations Research and Introduction**, Pearson Education edition
- 2. Operation Research, Prem Kumar Gupta, D.S. Hira, S Chand Pub, New delhi. 2007

Reference Books

- 1. Operation reaseach AM Natarajan, P. Balasubramani , A Tamilaravari Pearson 2005
- 2. Introduction to operation research. Hiller and liberman, Mc Graw Hill. 5th edition 2001
- 3. **Operations Research**, Principles and practice: Ravindran, Phillips & Solberg, Wiley India lts, 2nd edition 2007.
- 4. S.D. Sharma **Operations Research**, Kedarnath Ramnath & Co 2002.

Course Outcomes

- 1. **Identify** and develop operation research models from the verbal description of real life.
- 2. Analyse the problem using mathematical tools and simple queue system.
- 3. **Describe** the model and the solving technique to analyze the results and propose recommendation.
- 4. Solve Transportation and Assignment problem using different methods.
- 5. Explain the game theory with their characteristics and Solve problems.

Course Articulation Matrix																
					Pro	ogra	am	Ou	tco	me	s			PSO		
	Course Outcomes			3	4	5	6	7	8	9	10	11	12	01	02	
C01	Identify and develop operation research models from the verbal description of real life.	3			3	3								-	-	
CO2	Analyse the problem using mathematical tools and simple queue system.	2												-	-	
CO3	Describe the model and the solving technique to analyse the results and propose recommendation.					3								-	-	
CO4	Solve Transportation and Assignment problem using different methods.					2								-	-	
CO5	Explain the game theory with their characteristics and Solve problems.					2								-	-	

Department of Mechanical Engineering											
Cour	se Title: Foundry	& Welding Technolog	y								
Course Code: P15ME822	Semester: VIII	L-T-P-H: 4-0-0-4	Credits: 03								
Contact Period - Lecture: 52	2 Hrs. ; Exam: 3Hrs	S. Weightage: CIE: 5	0 %; SEE: 50%								
Course Objectives: The course aims at understanding and strengthening knowledge of											
advancements in Foundry	and welding tech	nology to the students	by exposing them to								
different Foundry and weldi	ng techniques that	are commonly used in i	ndustries.								
	Course	Content									
	UN	IT-I									
SOLIDIFICATION OF	CASTINGS: Intro	duction- concept of so	olidification of metals-								
solidification of pure metals- nucleation, homogeneous or self-nucleation, heterogeneous											
nucleation- growth- solidif	ication of alloys,	alloyed metal character	eristics, main types of								
alloys, solid solution alloys	, their characteristic	cs, and solidification, p	hase diagram, coring or								
segregation, types of segreg	gation, solute distri	bution, - solidification	phenomenon and grain								
structure, mechanism of der	drite, formation an	d dendrite growth- soli	dification rate, time and								
chvorinov's rule- progressiv	ve, directional solid	ification and control of	solidification to obtain								
sound castings.											
METALLURGY OF CA	AST STEEL: Co	omposition, structure,	control of properties,								
macrostructure, microstruct	ure, inclusions, H	eat- treatment, anneali	ng, normalizing, stress								
relief anneal, liquid quench and temper. Alloy steels, measurement of hardenability and its											
significance, production heat treating. 10 Hrs											
UNIT-II											
PRINCIPLES OF GATIN	NG: Gating System	n- Requirements, purpo	oses of functions of the								
gating system- nouring cu	he and basing- shr	uers- gates their chara	octeristics and different								

gating system- pouring cups and basins- spruers- gates, their characteristics and different types- design of gating system, objectives achieved from good design, defects occurring due to improper design of gating system, turbulence in gating system, metal flow rate and velocity calculations, design criteria for pouring basin, design of sprue, pouring time, design of runner and gates, pressurized and unpressurized gating system, streamlining the gating system, practical rules for gating practice, elimination of slag and dross for copper, ferrous and light metal alloys.

PRINCIPLES OF RISERING: Introduction- Functions of a riser- types of riser, open and blind risers- Riser and Directional solidification- increasing riser efficiency and promoting directional solidification, insulating materials, exothermic materials, chills, padding etc. – Feeder Head (or riser system) Design, general principles, riser shape, riser size, Chvorinove's rule, riser location and riser feeding distance- Risering practice for alloys- Heat loss from risers. **10 Hrs**

UNIT-III

CASTING DESIGN CONSIDERATIONS: functional design, mechanical strength, dimensional design factors, simplification of foundry practice, molding and coring, elimination of coring, metallurgical design,

SHAKEOUT/ CLEANING/ FINISHING: shakeout- modern developments, punchout machines, shakeout tables and decks, high frequency shakeouts, vibrating shakeout conveyors, rotary separators, robots and manipulators, - fettling(cleaning) and finishing of castings- removal of cores- cleaning of castings surfaces, hand methods and mechanical methods,- blast cleaning- process control- blast cleaning abrasives- air blasting- mechanical blast cleaning (wheelabrator system)- hydro blasting- safety considerations when blast cleaning nonferrous casting, chemical cleaning, removal of gates and riser- removal of fins and other unwanted projections from castings- finishing of castings- grinding castings, robots for grinding, manipulators, trim dies, abrasive products- surface treatment of castings. **10 Hrs**

UNIT-IV

WELDING PROCESSES: Classification of Welding and allied processes, cast weld processes: Thermit welding, Electroslag welding, Arc and Flame welding processes: Seam welding & Arc spot welding processes, Resistance welding processes: Spot welding, Seam

welding, Zonal welding processes, Solid state welding processes: High heat input and Low heat input processes, Allied processes: Material joining processes, Thermal cutting processes, Modes of Welding: manual welding, semiautomatic welding, automatic welding, automated welding(flexible welding system), positions in welding.

CRACKS IN WELDING: introduction, classifications in weld cracks, Hot and Cold cracks, Nomenclature, Location & Orientation of weld cracks: Weld metal cracks, Base metal cracks, Factors contribution to weld Cracking, Specific weld cracks: Chevron cracks, lamellar cracks, reheat cracking, stress corrosion cracking 11 Hrs

UNIT-V

DEFECTS IN WELDING: Classification of weld defects, General sources of weld defects, Arc welding defects: surface or visual defects, subsurface weld defects, Acceptance levels of arc welding defects, Weld defects in other arc welding processes: Resistance welding defects, defects in friction welding, defects in welds of other welding processes.

WELD INSPECTION AND QUALITY CONTROL: Introduction, visual inspection and measurement: equipment, visual inspection, Destructive tests, Non-Destructive tests(NDT): liquid penetrate testing, magnetic particle testing, eddy current testing, magneto graphic test, radiographic testing, ultrasonic testing, acoustic emission testing, comparison of NDT methods, Pressure and Leak testing: kerosene test, hydrostatic pressure testing, air pressure or pneumatic testing, vacuum testing, halide testing, helium test. **11 Hrs**

Text Books

- 1. CARL R Loper & PHILIP C Rosenthal, Richard W Heine, "**Principle of metal casting**", TMH-2001, ISBN-13:9780070993488
- 2. P.L.Jain, "**Principle at Foundry Technology**", MH education (India) ltd., 5th edition 2009, ISBN-13:9780070151291.
- 3. Dr R S Parmar, "**Welding Engineering and Technology**", Khanna publications, 2nd edition, 2004, ISBN-13:9788174090287

Reference Books

- John Campbell, "Casting", Butterworth heinnmann, 2nd edition, 2004, ISBN-13:9780750647915
- P.N.Rao, "Manufacturing technology Foundry, forming and welding", McGraw Hill , 4th edition volume 1, 2013,ISBN: 9789383286614
- 3. Dr. K. Radha Krishna, "**Manufacturing process** I", Sapna Book House, Bangalore. 5th Edition.2006, ISBN:8128002074

<u>Course Outcomes</u>

- 1. **Explain** concept of solidification of metals- solidification of pure metals- nucleation, homogeneous or self nucleation, heterogeneous nucleation- growth- solidification of alloys.
- 2. **Describe** gating System- Requirements, purposes of functions of the gating systempouring cups and basins- spruers- gates, their characteristics and different types- design of gating system, objectives achieved from good design, defects occurring due to improper design of gating system
- 3. **Explain** shakeout- modern developments, punchout machines, shakeout tables and decks, high frequency shakeouts, vibrating shakeout conveyors, rotary separators, robots and manipulators, fettling(cleaning) and finishing of castings- removal of corescleaning of castings surfaces, hand methods and mechanical methods
- 4. **Describe** classification of Welding and allied processes, cast weld processes: Thermit welding, Electroslag welding, Arc and Flame welding processes: Seam welding & Arc spot welding processes, Resistance welding processes: Spot welding, Seam welding, Zonal welding processes

5. Discus Weld defects in other arc welding processes: Resistance welding defects, defects in friction welding, defects in welds of other welding processes. Explain, Non-Destructive tests(NDT): liquid penetrate testing, magnetic particle testing, eddy current testing, magnetographic test, radiographic testing **Course Articulation Matrix** PSO **Program Outcomes Course Outcomes** 2 3 Δ 5 7 8 9 10 11 12 1 6 01 02 Explain Oxidation of liquid metals, gas dissolution in liquid metals, methods of **CO1** 3 degassing, fluidity, factors 1 2 affecting fluidity, fluidity tests, hot tearing, shrinkage of liquid and metals. **Describe** Structure of castings -significance and practical control cast structure, grain **CO2** 3 1 2 shape and orientation, grain refinement size. and modification of cast structure Explain Need for risering, general considerations of risering, riser shapes, riser size and location. Requirements of CO3 riser. Sand, insulation, and exothermic materials used for risers Classification Describe of Welding and allied processes, cast weld processes: Thermit welding, Electroslag welding, Arc and Flame welding **CO4** 2 3 1 processes: Seam welding & Arc spot welding processes, Resistance welding processes: Spot welding, Seam welding, Zonal welding processes Discus Weld defects in other arc welding processes: Resistance welding defects, defects in friction welding, defects in welds of other welding processes. Explain, 3 **CO5** 2 1 Non-Destructive tests(NDT): liquid penetrate testing, magnetic particle testing, eddy current testing, magnetographic test. radiographic testing

Cour	se Title: Renewab	le Ene	rgy Technolog	У	
Course Code: P15ME823	Semester: VIII	L-T-P	-H: 4-0-0-4	Credits: 03	
Contact Period - Lecture: 52	Hrs. ; Exam:3Hrs.		Weightage: C 50%	IE: 50%;	SEE:

Course Objectives: The course aims at strengthening the design capabilities of the students by exposing them to the design of different mechanical elements that are commonly used in machines.

Course Content UNIT-I

INTRODUCTION: Energy source, India's production and reserves of commercial energy sources, need for renewable energy sources, solar, photovoltaic, water power, wind, Wind-Hybrid Solar, bio-mass, ocean temperature difference, tidal and waves, geothermal (Qualitative and Quantitative).

SOLAR RADIATION: Extra-terrestrial radiation, spectral distribution of extra-terrestrial radiation, solar constant, solar radiation at the earth's surface, beam and global radiation, solar radiation data. **09 Hrs**

UNIT-II

SOLAR RADIATION MEASUREMENT: Pyranometer, shading ring, Pyrheliometer, sunshine recorder, schematic diagrams and principles of working. (no numericals)

SOLAR RADIATION GEOMETRY: Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle, expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent motion of sun, day length and numerical examples. **10 Hrs**

UNIT-III

SOLAR THERMAL CONVERSION: Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid), sensible heat storage, latent heat storage, application of solar energy water heating. Solar heating and cooling, active and passive systems, power generation, refrigeration. Distillation, solar pond, principle of working, operational problems, Solar cells and its applications

GEOTHERMAL ENERGY CONVERSION: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy. 11 Hrs

UNIT-IV

WIND ENERGY: Availability of wind energy in India, wind velocity and power from wind, major problems associated with wind power, wind machines: Types of wind machines and their characteristics, horizontal and vertical axis wind mills, coefficient of performance of a wind mill rotor.

TIDAL POWER: Tides and waves as energy suppliers and their mechanics, harnessing tidal energy, limitations.

OCEAN THERMAL ENERGY CONVERSION: Principle of working, Rankine cycle, problems associated with OTEC. 10 Hrs

UNIT-V

ENERGY FROM BIO MASS: Biomass **conversion** Photosynthesis, photosynthetic oxygen production, energy plantation, biogas production from organic wastes by anaerobic fermentation, description of biogas plants, problems involved with biogas production, application of biogas in engines, advantages.

HYDROGEN ENERGY :properties of Hydrogen with respect to its utilization as a renewable form of energy sources, production of hydrogen, electrolysis of water, thermal decomposition of water, thermos chemical production and bio-chemical production. **10 Hrs**

Text	Books														
1.	G.D Rai K, " Non conventional ener ISBN:9788174090737	gy s	our	ces	", I	Khai	nna	pub	olish	ers.	200	4,			
2.	Subhas P.Sukhatme, J K Nayak, "So	lar	ene	rgy	", Т	T ata	Mc	Gra	aw l	Hill	,Ind	ia 3	3^{rd}	Editi	on.
	2009, ISBN: 9780070142961														
Refe	rence Books	r 1	1		1.										
1.	1. N.K.Bansal, Manfred Kleeman and Mechael meliss, " Kenewable energy sources and														
2	Lohn W Twidell Tony Wair "Donoy	iW f so hl	1111, 0.07	200	JI	12B1	N:9	/80	D/4	000 11tla	238 daa	⊿th	adi	tion	
۷.	2. John W. I widen, Tony wen, Kenewable energy resources , Kouneage, 4 eardon, 2014 ISBN:0780415633581														
	2014, ISBN: 9780415055581	rse	011	tcoi	nes										
1.	After learning all the units of the cou	rse.	the	stuc	lent	is a	ble	to:							
2.	2. Identify production and reserves of commercial energy sources in India and Evaluate									ate					
	the availability of solar radiation.														
3.	Analyse solar energy with the help of	f sol	lar r	adia	atio	n m	eası	ırin	g in	stru	mer	nts a	nd I	Expl	ain
	the angles related to solar radiation ge	eom	etry	1.				•	0					•	
4.	Analyse and design solar collectors f	for h	narn	essi	ing	sola	r en	erg	y. D	Disc	uss	cha	ract	terist	tics
	of geothermal energy.														
5.	Explain different types of wind mills	and	l the	eir c	lesi	gn p	rinc	ciple	es. C	Com	iput	te co	oeffi	cien	t
	of performance of wind mill. Discuss	cha	arao	cter	isti	cs o	f tid	lal e	nerg	gy, (ocea	in th	nerm	nal	
	energy.														
6.	Discuss characteristics of biomass e	nerg	gy a	nd l	Des	crib	e th	ne m	neth	ods	of p	orod	ucti	on of	f
	hydrogen for utilization as a renewab	le fo	orm	of	sou	rce	of e	nerg	gy.						
	Course A	rtio	cula	tio	n M	[atri	X								
			1	1	Pr	ogra	am	Out	tcor	nes		1	-	PS	0
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
	Identify production and reserves														
COI	of commercial energy sources in		1	2		2		2					3		
	India and Evaluate the		1	2		4		5					5	-	-
	availability of solar radiation.														
	Analyse solar energy with the														
	help of solar radiation measuring														
CO2	instruments and Explain the	3	3	2										-	-
	angles related to solar radiation														
	geometry.														
	Analyse and design solar														
CO3	collectors for harnessing solar	3	1	3							2			-	-
	energy. Discuss characteristics														
	Emploin different types of wind														
	Explain different types of wind mills and their design principles														
	Compute coefficient of														
CO4	compute coefficient of	3									3			-	-
	Discuss characteristics of tidal														
	energy ocean thermal energy														
	Discuss characteristics of														
	biomass energy and Describe the														
	methods of production of														
CO	hydrogen for utilization as a										3		3	-	-
	renewable form of source of														
	energy														

Course Title: Computational Fluid Dynamics
Course Code: P15ME824Semester: VIIIL-T-P-H: 4-0-0-4Credits: 03
Contact Period - Lecture: 52 Hrs.; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: This course will prepare students in the fundamentals of the
computational approach to study fluid flow and heat transfer problems, and will provide a
deeper understanding of the physical models and governing equations of fluid dynamics. It
will also impart the knowledge of numerical techniques to the solution of fluid dynamics and
heat transfer problems.
Course Content
UNIT-I
GOVERNING EQUATIONS: Basics of computational fluid dynamics, Comparison of
experimental, theoretical and computational approaches, 3-D general mass conservation,
momentum and energy equations in differential form, integral form and vector representation
Cartesian and curvilinear co-ordinates (no derivations). Forms of the governing equations
particularly suited for CFD work: Generic form of equations. 12 Hrs
UNIT-II
PARTIAL DIFFERENTIAL EQUATIONS (PDE): Classification of PDE - physical &
mathematical classification of PDE - equilibrium problems, marching problems, Cramer rule
and Eigen value method, hyperbolic, parabolic and elliptic forms of equations and their
physical behavior. Physical boundary conditions. 09 Hrs
UNIT-III
FINITE DIFFERENCE METHOD: Derivation of finite difference equations for first and
second order accuracy different numerical schemes -Explicit and Implicit approach -
upwind, downwind, FTCS, etc., truncation error, Round-off and discretization errors and
analysis of stability. Error propagation. Stability properties of Explicit and Implicit methods.
numerical dissipation and numerical dispersion. Application of numerical methods to
selected model Equations: Wave equation. Heat equation. Laplace equation. 11 Hrs
UNIT-IV
FINITE VOLUME METHOD FOR DIFFUSION: Finite volume formulation of steady
state One dimensional diffusion problems. Simple problem solving, Finite volume methods
for diffusion equation. One dimensional unsteady heat conduction through Explicit. Crank –
Nicolson and fully implicit.
UNIT-V
FINITE VOLUME METHOD FOR CONVECTION - DIFFUSION
Finite volume formulation of steady state One dimensional convection-diffusion problems –
Central, upwind, Hybrid, Power-law, OUICK differencing schemes, Properties of
discretization schemes – Conservativeness, Boundedness, Trasnportiveness, 10 Hrs
Text Books
1. John c. tannehill, Dule A Anderson, Richard H Pletcher, "Computational fluid
mechanics and Heat transfer", CRC press, 3rd edition, April 15, 2011, ISBN-13:
9/815916903/5
2. Suhas.V Patankar "Numerical Heat Transfer and Fluid Flow", CRC Press
1980,ISBN-13:9780891165224
3. Versteeg, H.K., and Malalasekera, W. "An Introduction to Computational Fluid
Dynamics-The finite volume Method", Pearson, 2 ⁴⁰ edition, 2007. ISBN-
13:9780131274983
Keference Books
1. T.J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2 nd
edition, 2010, ISBN-13:9780521769693

2. John D.Anderson, Jr. "Computational fluid Dynamics- The basics with applications"

McGraw-Hill, Inc.1995, ISBN-13:9780070016859

3. Muralidhar, K., and Sundararajan, T. "**Computationsl Fluid Flow and Heat Transfer**", Narosa Publishing House, New Delhi, 2ndedition, 2009, , ISBN-13:9788173195228.

Course Outcomes

- 1. Apply the differential equations governing fluid flow and heat transfer .
- 2. classify and understand behaviour of partial differential equations
- 3. **understand and develop** finite difference discretizations schemes and implement them to solve engineering problems
- 4. **understand** the importance and implications of analytical issues: consistency, stability, convergence, error analysis.
- 5. understand and develop finite volume discretization schemes and implement them to solve engineering problems

	Course Articulation Matrix															
					Pro	gra	ım	Ou	tco	mes	5			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Applythedifferentialequationsgoverningfluidand heattransfer .	2	2		2	3		1	2	2	2		1	-	-	
CO2	classify and understand behavior of partial differential equations	2	2								2			-	-	
CO3	understandanddevelopfinitedifferencediscretization'sschemesimplementthemtosolveengineeringproblems	2	2	1	2	3			2	2	2	2	1	1	-	
CO4	Understand the importance and implications of analytical issues: consistency, stability, convergence, error analysis.	2	2								2			1	-	
CO5	understand and develop finite volume discretization schemes and implement them to solve engineering problems	2	2	1	2	3			2	2	2	2	1	1	-	

Course Title: Project Management
Course Code: P15ME831 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The course aims at strengthening the design capabilities of the students
by exposing them to the design of different mechanical elements that are commonly used in
machines.
Course Content
Concepts of Project Management: Concepts of a Project, Characteristics of a project Categories of projects, Phases of project life cycle, Roles and responsibilities of project leader, tools and techniques for project management. PROJECT PLANNING AND ESTIMATING: Feasibility report phased Planning, Project planning steps, Objectives and goals of the project, preparation of cost estimation, and evaluation of the project profitability. 10 Hrs
UNIT-II Organizing and Staffing: The Project Team: Skills / abilities required for project manager.
Authorities and responsibilities of project manager, Project organization and types
LINIT-III
Project Scheduling: Project implementation scheduling, different scheduling techniques bar (GANTT) charts, Bar charts for combined activities. Project evaluation and Review Techniques, PERT, planning. Simple Numerical Problems. 10 Hrs
UNIT-IV
Co-Ordination and Control: Project direction, Communication in a project, Project coordination, Role of MIS in project control, performance control, schedule control, cost Control Examples. 11 Hrs
UNIT-V
Performance Measures in Project Management: Performance indicators, Performance improvement-Do-It-Yourself, Performance improvement for the CM and DM companies for better project management. CLOSING OF PROJECT: Types of project termination, strategic implications, project in trouble, termination strategies, evaluation of termination possibilities. 10 Hrs
Text Books
 Harold Kerzner, "Project Management: A Systems Approach To Planning, Scheduling And Controlling", Wiley India Pvt. Ltd. New Delhi, Feb18, 2013- ISBN: 9781118022276 Lawrence P Leach, "Project Management", Mc-Graw Hill (1970), Artech house 2014 3rd edition, ISBN:9781608077342
Reference Books
 James P. Lewis, "Project planning, Scheduling & control", Mc-Graw Hill education, 5th edition, 2010, ISBN: 9780071746526
2. S Choudhury, "Project Management", TATA Mc-Graw Hill, 1989, ISBN:9780074600689
Course Outcomes
 After learning all the units of the course, the student is able to; 1. Define and Recognise project management stages 2. Write Feasibility report, 3. Illustrate Project implementation scheduling. 4. Demonstrate Performance improvement.

	Course Articulation Matrix														
					PSO										
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	01	02
C01	Define and Recognise project management stages	2												-	-
CO2	Write Feasibility report,			2	2									-	-
CO3	IllustrateProjectimplementation scheduling.	2										2		-	-
CO4	Demonstrate Performance improvement.								1			2		-	-
CO5	Identify project in trouble.	2				2								-	-

Course Title: Additive Manufacturing TechniquesCourse Code: P15ME832Semester: VIIIL-T-P-H: 4-0-0-4Credits: 03Contact Period - Lecture: 52 Hrs. ; Exam:3Hrs.Weightage: CIE: 50 %;SEE: 50%Course Objectives: This course exposes students to latest additive manufacturing processesused to produce prototypes, parts and tools.

Course Content UNIT-I

INTRODUCTION: Need for the compression in product development, history of AM systems and classification of AM systems, basic steps in AM, advantages and disadvantages of AM process.

LIQUID BASED AM PROCESS: Stereo lithography Systems: Principle, Process parameter, process details, merits and demerits, Applications. Solid Ground Curing: Principle of operation, process parameters, merits and demerits, Applications. 10 Hrs

UNIT-II

POWDER BASED AM PROCESSES: Selective Laser Sintering: Principle of operation, process parameters, merits and demerits, Applications. Laser Engineering Net Shaping: Principle of operation, process details, merits and demerits, applications.

SOLID BASED AM PROCESSES: Laminated Object Manufacturing: Principle of operation, LOM materials, process parameters, process details, merits and demerits, application. Fusion Deposition Modelling: Principle, Process parameter, Path generation, merits and demerits, Applications. 11 Hrs

UNIT-III

APPLICATIONS OF ADDITIVE MANUFACTURING: Functional Models, Pattern for Investment and Vacuum Casting, Medical Models, Art Models, Engineering Analysis Models.

CONCEPTS MODELERS: Principle, types, difference between AM machine and Concept modeler, Thermal jet printer, Sander's model maker, 3- D printer. Genisys Xs printer, JP system 5, Object Quadra systems. **10 Hrs**

UNIT-IV

RAPID TOOLING: Classification of Rapid tools, Soft Tooling vs. Hard Tooling. Indirect Rapid tooling: - Silicone rubber tooling, Aluminium filled epoxy tooling, Spray metal tooling, Cast kirksite, 3D keltool. Direct Rapid Tooling: - Direct AIM, Quick cast process, RapidSteel1.0, RapidSteel 2.0, Copper polyamide, DMLS, Prometal, Sand casting tooling, Laminate tooling. DTM RapidTool. 11 Hrs

UNIT-V

RAPID MANUFACTURING AND PROCESS OPTIMIZATION: Factors influencing accuracy. Data preparation errors, errors due to Tessellation and slicing Part building errors in SL process and SLS process, Error in finishing, influence of part build orientation in SL process and SLS process. 10 Hrs

Text Books

- 1. Paul F.Jacobs, "Stereo lithography and other RP & M Technologies" -SME, NY 1995.ISBN-13:9780872634671
- 2. Pham D.T & Dimov, S.S Verlog, "**Rapid Manufacturing**" springer, London 9 November 2011, ISBN-13:9781447111825

Reference Books

- Wohlers, Terry T, "Rapid Prototyping" Wohler's Report 2000, Wohler's Association 2000. Wohlers Report 2015, 314-page publication, Wohlers Associates, Inc., April 2015
- 2. Gurumurthi, Rapid prototyping materials, IISc Bangalore
- 3. LamOnt wood, "**Rapid automated**" Industrial press, New York, August 1, 1993, ISBN-13: 9780831130473

Course Outcomes

- 1. Identify Classification of AM systems.
- 2. **Describe** working principle and applications of major AM systems
- 3. Distinguish AM Machine and Concept Modelers
- 4. Explain different types of rapid tooling
- 5. Identify factors influencing part accuracy in AM

	Course Articulation Matrix														
Course Outcomes					PSO										
		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Identify AM systems based on raw materials used.	2	1	1										-	-
CO2	Compare various AM process	2	1	1										-	-
CO3	Distinguish between AM machines and concept modelers.	2	1	1										-	-
CO4	Explain Direct and Indirect rapid tool	2	1	1										-	-
CO5	Distinguish between part building errors in SL and SLS process	3	1	1										-	-

Course Title: Power Plant Engineering
Course Code: P15ME833 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: the course is helps the student to understand about power plants and its
working and the student must able understand the importance of renewable sources.
Course Content
UNIT-I
A BRIEF ACCOUNT OF HARNESSING ENERGY: From sources such as fuels, flowing
water, wind, ocean, tides and waves, geothermal and nuclear energy. A brief description of
thermionic, thermoelectric and fuel cell energy conversion devices. Choice of site for power
station: load estimation; use factor, diversity factor and demand factors effect of variable load
on power plant: selection of the number and size of units. 10 Hrs
UNIT-II
HYDROELECTRIC AND THERMAL POWER PLANT: Hydrometric survey, rainfall,
catchment area, runoff, storage and poundage; flow duration and mass curves, hydrographs.
Classification of hydroelectric plants. General arrangement of a hydroelectric plant and its
operation. General layout of Steam power plant. Developing trends in thermal coal in lump
form stokers; different types of stokers, equipment for preparation and burning of pulverized
coal, unit system and bin system, pulverized fuel furnaces, cyclone burners. 11 Hrs
UNIT-III
GENERATION OF STEAM: A brief account of Lamont, Benson, Loeffler and Ramsin
steam generators. Chimneys: Natural, forced, induced and balanced draft.
STEAM GENERATOR ACCESSORIES: Super-neaters and re-neaters. Different types of
cooling towers, Coal and ash handling - different types of coal storage and coal conveyors,
Intr IV
UNIT-IV DIFSEL ENCINE PLANT-Engines for power generation Method of starting diesel
engines Cooling and lubrication system for the diesel engine Filters centrifuges Oil heaters
intake and exhaust system I avout of a diesel power plant Gas turbine power plant:
Advantages and disadvantages of the gas turbine plant. Onen and closed cycle turbine plants
with the accessories 10 Hrs
UNIT-V
NUCLEAR ENERGY: Fusion and fission reaction: elements of a nuclear reactor-
moderator, control rod, fuel rods coolant, Nuclear fuels, Lavout of a typical nuclear power
plant.
REACTORS: Pressurized water reactor, Boiling water reactor, Sodium-Graphite reactor,
Fast Breeder reactor and Gas cooled reactor. Radiation hazards; shielding, and radioactive
waste disposal. 10 Hrs
Text Books
1. Arora& S Domkundwar, AV Domkundwar, "A course in Power Plant Engineering",
Dhanpatrai& co. Pvt.ltd.2014, ISBN:9788177001075
2. P. K. Nag, "Power Plant Engineering" Tata McGraw Hill, INDIA 4 TH edition. 2014, ISBN:9789339204044
3. F.T. Morse, "Power Plant Engineering", G. Van Nostrand. 3 rd edition 1953, ISBN:9780442055561
Reference Books
1. Barrows, Water power Engineering, TMH, New Delhi, 3 rd edition, 1998
2. Stanierr, Plant Engineering, Hand Book, McGraw Hill. 1998
3. JagadishLal, "Hydraulic Machines" Metropollitan Book Co. Pvt Ltd., 1994.ISBN: 978-

8120000261

Course Outcomes

- 1. Discuss energy sources such as fuels, flowing water, wind, ocean, tides, waves, geochemical, nuclear energy and Calculate load estimation, use factor and demand factor.
- 2. Characterize the working principle of Hydroelectric power plant and Describe different types of stokers and oil burners in thermal power plant.
- 3. **Discuss** generation of steam by using high pressure boilers.
- **4. Discuss** Steam Generator Accessories, Method of starting Diesel Engine to generate power, Cooling and Lubrication System and Layout of diesel Power plant.
- **5. Recognize** the Principles of Nuclear Energy and **Describe** different types of nuclear Reactors.

	Course Articulation Matrix															
					Pro	ogra	am	Ou	tco	me	S			PSO		
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Explain energy sources such as fuels, flowing water, wind, ocean, tides, waves, geochemical, nuclear energy and Analyze the load estimation, use factor and demand factor.	3	3											-	-	
CO2	Summarize the working principle of Hydroelectric power plant and different types of stokers and oil burners in thermal power plant.			2										-	-	
CO3	Explain generation of steam by using high pressure boilers and solve height and efficiency of Chimney.	3	3										1	-	-	
CO4	Explain Steam Generator Accessories, Method of starting Diesel Engine to generate power, Cooling and Lubrication System and Layout of diesel Power plant.	3		1										-	-	
CO5	Define the Principles of Release in Nuclear Energy and Explain different types of nuclear Reactors.		1				1							-	-	

Course Title: Tribology
Course Code: P15ME834 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03
Contact Period - Lecture: 52 Hrs.; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The course aims at strengthening the capability of students to integrate
friction, wear and lubrication theories in design, manufacturing and operation of sustainable
machine elements and their maintenance.
Course Content
UNIT-I
Introduction to Tribilogy: Introduction to tribology, friction, laws of friction, friction
theories, surface contaminants and frictional heating. Wear- classification of wear,
mechanisms of wear, basic wear testing methods- pin on disc wear tester and dry sand rubber
wheel abrasion tester, wear resistant materials.
Surface roughness: introduction, standardization of surface roughness, M & E system,
center line average, root mean square roughness, probability distribution function,
autocorrelation function. Abbott bearing area curve. Surface roughness measurement
techniques- stylus method, interferometric method, optical profilometer and pheumatic
UNIT-II I ubricants and I ubrication: Types of bearing lubricants, types of lubricants. I ubrication
types of sliding lubrication-fluid-film lubrication, houndary lubrication and extreme boundary
lubrication Properties of oils and equation of flow- viscosity Newton's law of viscous flow
effect of temperature on viscosity viscosity index, effect of pressure on viscosity, viscosity
measuring apparatus- U-tube viscometer. Say bolt universal viscometer and Redwood
viscometer. Hagen- Poiseuille Law, flow through capillary tube, flow between parallel
stationary plates. 10 Hrs
UNIT-III
Hydrodynamic Lubrication: Friction forces and power loss in lightly loaded bearing,
coefficient of friction for a lightly loaded bearing (Petroff's equation), numerical examples of
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations,
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings.
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions.
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe. Pressure distribution load carrying capacity coefficient of
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe, load carrying capacity frictional
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance coefficient of friction location of the pivot point of a slider bearing with a pivot
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe Numerical problems
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation),
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution.
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and friction force. Numerical problems on idealized hydrodynamic journal bearing.
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and friction force. Numerical problems on idealized hydrodynamic journal bearing. Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings,
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and friction force. Numerical problems on idealized hydrodynamic journal bearing. Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing. Numerical on
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and friction force. Numerical problems on idealized hydrodynamic journal bearing. Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearings. Numerical on hydrostatic lubrication. 12 Hrs
lightly loaded full-journal bearing, Tower's experiments, Reynolds investigations, mechanism of pressure development in an oil film, application of converging oil film in thrust bearing, formation of a converging oil film in a partial and full journal bearings. Reynold's equation in two dimensions. 10 Hrs UNIT-IV Idealized Hydrodynamic Bearings: Definition of idealized bearings, idealized plane-slider bearing with a fixed shoe- Pressure distribution, load carrying capacity, coefficient of friction. Idealized slider bearing with a pivoted shoe- load carrying capacity, frictional resistance, coefficient of friction, location of the pivot point of a slider bearing with a pivot shoe. Numerical problems. 10 Hrs UNIT-V Hydrodynamic Journal Bearing: Idealized journal bearings- infinitely long-full journal bearing- oil film thickness, Sommerfeld substitution, pressure distribution (no derivation), load carrying capacity, Sommerfeld number, viscous friction, modified Sommerfeld solution. Infinitely short-full journal bearing- pressure distribution (no derivation), load capacity and friction force. Numerical problems on idealized hydrodynamic journal bearing. Hydrostatic Lubrication: Introduction to hydrostatic lubrication, hydrostatic step bearings, load carrying capacity and oil flow through the hydrostatic step bearing. Numerical on hydrostatic lubrication. 12 Hrs Text Books

2009, ISBN: 978-81203272382. B. C. Mujumdar, Introduction to Tribiology of bearings, S.Chand (G/L) & Company Ltd,

Course Title: Industrial Robotics and Automation (Open Elective-II)									
Course Code: P15ME841Semester: VIIIL-T-P-H: 4-0-0-4Credits: 03									
Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%									
Course Objectives:									
• To familiarize students with brief history of robot and basic concepts of industrial robot.									
• To expose the students to kinematics of robots and programming of robot									
• To make the students familiar with various applications in robots in industry									
Course Content									
INTRODUCTION: Automation and robotics, brief history of robotics, Robot Anatomy, Joints and Links, wrist and its motions, Classifications of robots, Robot Control Systems, Geometrical configuration, Work Volume, Pay load, Stability, Resolution, Accuracy and Repeatability. 10 Hrs									
UNIT-II									
STRUCTURE OF ROBOTIC SYSTEM: End Effectors: types of grippers, tools. Robot drive system: Hydraulic, electric and pneumatic, Types of Actuators. Feedback components: position, velocity sensors, internal State sensors, tactile sensors, - proximity sensing, range sensing, force-torque sensors. 10 Hrs									
UNIT-III									
ROBOT ARM KINEMATICS: Introduction to Kinematics, direct and inverse Kinematics, rotation Matrix, composite rotation matrix, rotation matrix about an arbitrary axis, Euler angles representation, homogeneous transformations, D-H representation of 3- axis robot. 10 Hrs									
UNIT-IV									
ROBOT PROGRAMMING: Introduction, manual teaching, lead through teaching, Robot programming languages: Generations of robot programming Languages. Robot language elements and functions, Motion commands, simple programs. 10 Hrs									
UNIT-V									
ROBOTS IN MANUFACTURING AUTOMATION: Material Transfer: general considerations in robot material handling: pick and place, palletizing operations. Machine loading and unloading: Die casting, Plastic moulding, Forging, machining and stamping press operations. Processing Operations: features of spot and arc welding robot, spray coating and other processing applications. 12 Hrs									
Text Books									
 Michell Grover, Mitchel weiss, Roger nagel "Industrial Robots", McGraw Hill 2012, India ,2ND edition, ISBN-13:9780070265097 Warman Kana (Dabatica for Engineers"), Ma Gram hill, Intl. Back Gram New Dalki. 									
2. Foramin Koren, "Koboucs for Engineers" Mc Graw mit Inti. Book Co., New Deim 1987 ISBN-13:9780070353992									
Reference Books									
 Robert J. Schilling, "Fundamentals of Robotics" PHI, 1ST edition2011, ISBN- 13:9788120310476 									
3. K.S. Fu, R.C. Gonzales and Lee, "Robotics" . McGraw Hill Intl. India, 1 ST edition, 2008 ISBN-13:9780070265103									
2. Richard D. Klafter, C Thomas A, " Robotic Engineering " PHI,1993, ISBN- 13:9788120308428									
3. R.K. Mittal and J. Nagarath, "Robotics and Control" Tata Mc Graw Hill, DELHI,6 TH edition 2007, ISBN:0070482934									

Course Outcomes

After learning all the units of the course, the student is able to;

- 1. Analyze work volume, resolution, and accuracy of various configuration of robots
- 2. Identify different types of end effectors and sensors required for specific applications
- 3. Calculate the forward kinematics of robots using DH method
- 4. Develop robot task program using robot language
- 5. Discuss requirements of robot systems for various industrial applications.

Course Articulation Matrix															
					PSO										
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Analyze work volume, resolution, and accuracy of various configuration of robots	2	2	1	1									-	1
CO2	CalculatetheforwardkinematicsofrobotsusingDHmethod	2	2	1	1									-	-
CO3	Identify different types of end effectors and sensors required for specific applications										1		1	-	1
CO4	Develop robot program using robot languages					2					1		1	-	
CO5	Discuss various applications of industrial robot systems.					1					2		2	-	1

Course Title: Additive Manufacturing Process (Open Elective-II)

Course Code: P15ME842Semester: VIIIL-T-P-H: 4-0-0-4Credits: 03Contact Period - Lecture: 52 Hrs. ; Exam: 3Hrs.Weightage: CIE: 50 %;S

Contact Period - Lecture: 52 Hrs. ; Exam:3Hrs.Weightage: CIE: 50 %;SEE: 50%Course Objectives: This course exposes students to latest additive manufacturing processesused to produce prototypes, parts and tools.

Course Content

UNIT-I

INTRODUCTION: Need for the compression in product development, Prototypes, history of AM systems and classification of AM systems, basic steps in AM, advantages and disadvantages of AM process.

LIQUID BASED AM PROCESS: Stereo lithography Systems: Principle, process details, merits and demerits, Applications. Solid Ground Curing: Principle of operation, process parameters, merits and demerits, Applications. 12Hrs

UNIT-II

POWDER BASED AM PROCESSES: Selective Laser Sintering, Principle of operation, process parameters, merits and demerits, Applications. Laser Engineered Net Shaping: Principle of operation, process details, merits and demerits, applications.

SOLID BASED AM PROCESSES: Laminated Object Manufacturing: Principle of operation, materials, process parameters, merits and demerits, application. Fusion Deposition Modelling: Principle, Process parameter, merits and demerits, Applications. **10Hrs**

UNIT-III

CONCEPTS MODELERS: Principle, types, difference between AM machine and Concept

modeler, Thermal jet printer, Sander's model maker, 3- D printer. Genisys Xs printer, JP															
system 5, Object Quadra systems. 10Hrs															
UNIT-IV															
RAPID TOOLING: Classification of Rapid tools, Indirect Rapid tooling: -Silicone rubber															
tooling, Spray metal tooling, 3D Keltool. Direct Rapid Tooling: Direct AIM, PRO Metal,															
DTM Rapid Tool. 10Hrs															
UNIT-V															
APPL	APPLICATIONS OF ADDITIVE MANUFACTURING: Medical field. Automotive														
Industry, Aeronautical Industry, Construction Industry.10Hrs															
Text Books															
1. Paul F.Jacobs, "Stereo lithography and other RP & M Technologies" -SME, NY 1995 ISBN-13:9780872634671												, NY			
2. Pł	nam D.T & Dimov, S.S Verlo	g,	"Ra	apic	1 1	Mar	nuf	act	uri	ng'	'sp	orin	ger,	Lond	on 9
N	ovember 2011, ISBN-13:97814471	111	825	-							-		-		
Refere	nce Books														
1. I.C	Gibson, D. W. Rosen, B. Stucker,	"A	ddit	ive	Ma	nut	fact	uri	ng ′	Гес	hno	logi	ies"	ISBN:	978-
1-	1-4419-1119-3, e-ISBN: 978-1-4419-1120-9 Springer New York														
2. W	ohlers, Terry T, "Rapid Prototyp	oing	" V	Voh	ler	's F	Rep	ort	20	00,	We	ohle	er's	Associ	ation
20	2000. Wohlers Report 2015, 314-page publication, Wohlers Associates, Inc., April														
20	2015														
3. La	amont wood, "Rapid automated"	Indu	ıstr	ial j	pres	ss, i	Nev	NΥ	or	k, /	Aug	ust	1, 1	993, I	SBN-
13	3: 9780831130473														
<u>Course Outcomes</u>															
After le	earning all the units of the course, t	he s	stud	ent	18 8	able	to;								
	lentify Classification of AM system	ns.			c										
2. D	escribe working principle and app			ns o dali	or r	najo	or P	AIVI	sys	sten	ns				
\mathbf{J}	istinguish AM Machine and Conce	ept			ers										
4. E	xplain different types of Indirect rap	nu i	1001. 1 toy	mg Jin	a										
<i>J</i> . Iu	Course	apic A rt			<u>g</u> 2001	Ma	trix	7							
	Course		icu		DII J Dro	arc		<u>.</u> 	teo	mo	C			DC	0
	Course Outcomes					gra		Uu			ъ С			10	U
		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Identify AM systems based on	2	1	1									1		1
COI	raw materials used.	2	I	I									I	-	I
CO2	Compare various AM process	2	1	1										-	-
	Distinguish between AM														
CO3	machines and concept	2	1	1										-	-
	modelers.														
	Explain Applications														
CO4	of AM in various	2	1	1									1	-	1
	fields														
CO5	Distinguish Direct and	2	1	1									1	-	1
	Indirect rapid tool														

Course Title: Power Plant Engineering (Open Elective-II)										
Course Code: P15ME843Semester: VIIIL-T-P-H: 4-0-0-4Credits: 03										
Contact Period - Lecture: 52 Hrs.; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%										
Course Objectives: the course is helps the student to understand about power plants and its										
working and the student must able understand the importance of renewable sources.										
Course Content										
UNIT-I										
A BRIEF ACCOUNT OF HARNESSING ENERGY: From sources such as fuels, flowing										
water, wind, ocean, tides and waves, geothermal and nuclear energy. A brief description of										
thermionic, thermoelectric and fuel cell energy conversion devices. Choice of site for power										
station: load estimation; use factor diversity factor and demand factors. 10 Hrs										
HYDROELECTRIC AND THERMAL POWER PLANT: Hydrometric survey, rainfall,										
catchment area, runoff, storage and pondage; flow duration and mass curves, hydrographs.										
Classification of hydroelectric plants. General arrangement of a hydroelectric plant and its										
operation. Developing tiends in thermal coal in tump form stokers, different types of stokers,										
UNIT III										
CENERATION OF STEAM: A brief account of Lamont and Benson steam generators										
STEAM GENERATOR ACCESSORIES: Super-heaters and re-heaters. Different types of										
cooling towers Coal and ash handling - different types of coal storage and coal conveyors										
pneumatic and hydraulic methods of ash handling systems 11 Hrs										
UNIT-IV										
DIESEL ENGINE PLANT -Engines for power generation. Method of starting diesel										
engines, Cooling and lubrication system for the dieselengine. Filters, centrifuges, Oil heaters,										
intake and exhaust system. Gas turbine power plant: Advantages and disadvantages of the gas										
turbine plant Open and closed cycle turbine plants with theaccessories. 10 Hrs										
UNIT-V										
NUCLEAR ENERGY: Fusion and fission reaction; elements of a nuclear reactor-										
moderator, control rod, fuel rods coolant. Nuclear fuels.										
REACTORS: Pressurized water reactor, Boiling water reactor and Gas cooled reactor.										
Radiation hazards; shielding, and radioactive waste disposal.10 Hrs										
Text Books										
1. Arora& S Domkundwar, AV Domkundwar, "A course in Power Plant Engineering",										
Dhanpatrai& co. Pvt.ltd.2014, ISBN:9788177001075										
2. P. K. Nag, "Power Plant Engineering" Tata McGraw Hill, INDIA 4 TH edition. 2014,										
ISBN:9789339204044										
3. F.T. Morse, "Power Plant Engineering", G. Van Nostrand. 3 rd edition 1953,										
ISBN:9780442055561										
Reference Books										
1. Barrows, Water power Engineering, TMH, New Delhi, 3 rd edition, 1998										
2. Stanierr,Plant Engineering, Hand Book, McGraw Hill. 1998										
3. JagadishLal, "Hydraulic Machines" Metropollitan Book Co. Pvt Ltd., 1994.ISBN: 978-										
8120000261										
Course Outcomes										
After learning all the units of the course, the student is able to;										
1. Discuss energy sources such as fuels, flowing water, wind, ocean, tides, waves.										
geochemical, nuclear energy and Calculate load estimation, use factor and demand										
factor										

2. Characterize the working principle of Hydroelectricpower plant and Describe different

types of stokers and oil burners in thermal power plant.

- 3. **Discuss**generation of steam by using high pressure boilers and **Calculate**height and efficiency ofChimney.
- 4. **Discuss**Steam Generator Accessories, Method of starting Diesel Engine to generate power, Cooling and Lubrication System and Layout of diesel Power plant.
- 5. **Recognize** the Principles of Nuclear Energy and **Describe** different types of nuclear Reactors.

Course Articulation Matrix																
				Program Outcomes PSC												
Course Outcomes			2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Explain energy sources such as fuels, flowing water, wind, ocean, tides, waves, geochemical, nuclear energy and Analyze the load estimation, use factor and demand factor.	3	3											-	-	
CO2	Summarize the working principle of Hydroelectric power plant and different types of stokers and oil burners in thermal power plant.			2										-	-	
CO3	Explain generation of steam by using high pressure boilers and solve height and efficiency of Chimney.	3	3										1	-	-	
CO4	Explain Steam Generator Accessories, Method of starting Diesel Engine to generate power, Cooling and Lubrication System and Layout of diesel Power plant.	3		1										-	-	
CO5	Define the Principles of Release in Nuclear Energy and Explain different types of nuclear Reactors.		1				1							-	-	

Course Title: Maintenance Engineering										
Course Code: P17ME844 Semester: VIII L-T-P-H: 4-0-0-4 Credits: 03										
Contact Period - Lecture: 52 Hrs.; Exam:3Hrs. Weightage: CIE: 50 %; SEE: 50%										
Course Objectives: The course aims at strengthening the Maintenance and management										
capabilities of the students by exposing them to handling the different maintenance										
requirements and management that are commonly used in Machinery.										
Course Content										
UNIT-I										
Introduction to Maintenance System: Definition, Scope, Objective, Functions and										
Importance of maintenance system.										
Types of Maintenance System: Break down maintenance system, Preventive maintenance,										
Predictive maintenance design out maintenance, corrective maintenance, Planned										
maintenance, total productive maintenance, condition monitoring. Problems on selection of										
Internods like preventive or breakdown maintenance. 12Hrs										
UNIT-II Economics in Maintenance: Densir replacement Densir complexity Finding out most										
entimel proventive mointenance: Repair, replacement, Repair complexity, Finding out most										
Machinery Maintenance: Causes of machine failure performance evaluation complete										
overhauling of Machines tools. 10Hrs										
UNIT-III										
Maintenance Planning: Maintenance planning and scheduling. Repair order control										
manpower requirement, Maintenance job analysis spare parts control.										
Maintenance Scheduling: Planning of maintenance junctures man power allocation, Long										
range planning, short range planning. Planning techniques and procedure. Estimation of										
maintenance work. Maintenance control.										
UNIT-IV										
Application of computer to maintenance work										
Pollution Control in Industry: Dust control- Fiber collectors mechanical dust collectors										
wet type collectors Electro static precipitators Noise pollution Control –Noise measurement										
and control. Industrial vibration and its control.										
UNIT-V										
Industrial Safety : Economic importance of accidents, types of safety organizations, analysis										
of accident records, accident investigations. Analysis of accident Safety standards for										
Mechanical equipment and Electrical system. Chemical hazards, material handling, exhaust										
system, welding, plant housekeeping-building, Aisles, Passages, floors, tool cribs,										
washrooms, canteens. 10Hrs										
Text Books										
1 R. C. Mishra and K Pathak, "Maintenance Engineering and Management," PHI Learing Pvt. Ltd., 2 nd edition, 2012, ISBN: 9788120345737.										
2 Morrow L C, "Maintenance Engineering Hand book," McGraw-Hill Inc., US:2 nd										
revised edition, 1967, ISBN: 9780070432017.										
Reference Books										
1 Frank Herbaty, "Hand book of Maintenance Management," Noyes Publication, 2 nd										
2 W Grant Irason Eugene I. Grant "Hand book of Industrial Enga & Managament"										
2 w. Grant neson, Eugene E. Grant, Hand book of muustriai Engg & Management, 2000										
3 Herbert F. Lund "Industrial Pollution Control Handbook "McGraw-Hill Publication										
1 st edition 1971 ISBN: 9780070390959										
4 H P Garg, "Industrial Maintenance," S Chand & Co Ltd., 3 rd edition. 1987. ISBN:										

<u>97881219016</u>80.

- 5 Keith Mobley, Lindrey Higgins, Darrin Wikoff, "Maintenance engineering Hand book," McGraw Hill, 7th edition, 2008, ISBN: 9780071546461.
- 6 William Staniar, "**Plant engineering hand book**," McGraw-Hill Publication,1st edition,1950, Digitized 2007.

Course Outcomes

- 1. **Distinguish** maintenance system types, scope, objective, functions and importance.
- 2. **Recognize** causes of machine failure, performance evaluation and overhauling.
- 3. **Evaluate** overhauling, maintenance planning, scheduling, estimation and maintenance control.
- 4. Analyse benefits and application of computer aided maintenance, and pollution control.
- 5. Analyse accident records, accident investigations, industrial and accident safety.

Course Articulation Matrix															
					PSO										
Course Outcomes		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Distinguish maintenance system types, scope, objective, functions and importance.	3	1											-	2
CO2	Recognize causes of machine failure, performance evaluation and overhauling.	3	3								1		1	-	3
CO3	Evaluate overhauling, maintenance planning, scheduling, estimation and maintenance control.	3	2				1	1			1		2	-	3
CO4	Analyse benefits and application of computer aided maintenance, and pollution control.	3	1	1			2	2					2	-	3
CO5	Analyse accident records, accident investigations, industrial and accident safety.	3	1	2			3				1		2	-	3