

PREFACE

PES College of Engineering, Mandya, started in the year 1962, has become autonomous institute in the academic year 2008-09. Since, then it has been doing the academics and assessment activities successfully. The college is running eight undergraduate and eight Postgraduate programs including MBA and MCA which are affiliated to VTU, Belagavi.

India has recently become a Permanent Member of the Washington Accord. The accord was signed by the National Board of Accreditation (NBA) on behalf of India on 13th June 2014. It enables not only the mobility of our degree globally but also establishes equivalence to our degrees with that of the member nations. The implementation of Outcome Based Education (OBE) has been the core issue for enabling the equivalence and of Indian degrees and their mobility across the various countries.

Our Higher Educational Institution has adopted the Choice Based Credit System (CBCS) based semester structure with OBE scheme and grading system. Which provides the flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. There lies a shift in thinking, teaching and learning process moving towards Students Centric from Teachers Centric education which enhances the knowledge, skills & moral values of each student.

Choice Based Credit System (CBCS) provides the options for the students to select from the number of prescribed courses. The CBCS provides a 'cafeteria' type approach in which the students can Choose electives from a wide range of courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits, adopt an interdisciplinary approach for learning which enables integration of concepts, theories, techniques. These are greatly enhances the skill/employability of students.

In order to increase the Industry/Corporate readiness, many Soft Skills, self learning components and Personality Development modules have been added to the existing curriculum. In order to enhance creativity and innovation Mini Project and Industrial visit & Interaction are made mandatory for all undergraduate programs.

Dr. Umesh D R Deputy Dean (Academic) Associate Professor, Dept. of Computer Science & Engg. **Dr. P S Puttaswamy** Dean (Academic) Professor, Dept. of Electrical & Electronics Engg.

PES College of Engineering

Vision

"A leading institution imparting quality engineering and management education developing creative and socially responsible professionals"

Mission

Mission of P E S College of Engineering is to,

- Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- Promote research, product development and industry-institution interaction.

About the Department of Mechanical Engineering

The department of Mechanical Engineering was established in the year 1962 during the origination of the institute. The department was granted academic autonomy in the year 2009. The department presently offers B.E in Mechanical Engineering, M Tech in Computer Integrated Manufacturing (CIM), M Tech in Machine Design, M.Sc., (Engg.) by research and research leading to Ph.D. The present intake capacity of the department is 120 for BE, 18 for M Tech CIM and 24 for M Tech Machine Design. The department has a faculty-student ratio of 1:15 for UG courses and 1:12 for PG courses. The department has well established laboratories to meet the academic requirements of UG and PG programmes and a skilled technical faculty to train the students. The department has its own library which has a collection of about 3861 reference books.

The department has been NBA accreditated for 3Years in 2017.

The department regularly organizes industrial visits, technical lectures by experts from industries and institutes in contemporary areas to bridge the gap between syllabi and current

developments. The students are encouraged to undergo industrial training as well as to take

up industry oriented projects during their academic course. Mechanical Engineering Association, formed by the students and faculty of the department regularly organizes cocurricular and extracurricular activities for the students.

Department Vision

"Be a department well recognized for its ability to develop competent mechanical engineers capable of working in global environment"

Department Mission

The Mission of the Department of Mechanical Engineering is to:

- Provide quality education by competent faculty.
- Provide adequate infrastructure and learning ambience for the development of essential technical skills.
- Inculcate a sense of higher education and research orientation.
- Foster industry interaction.

Program Educational Objectives (PEOs)

The Department of Mechanical Engineering has formulated the following programme educational objectives for the under-graduate program in Mechanical Engineering:

The Mechanical Engineering graduates will be able to:

- **PEO1:** Use the fundamentals of basic science, mathematics and mechanical engineering, to pursue their career as engineers as well as to lead and manage teams in global organizations.
- **PEO2:** Pursue advanced education, research and development and engage in the process of life-long learning.
- **PEO3:** Become entrepreneurs in a responsible, professional and ethical manner to serve the society.

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PES COLLEGE OF ENGINEERING, MANDYA (An Autonomous Institution, Under VTU)

	Scheme of Tea	ching and Examination			III Sen	nester B.E	С. (ME)	
SI. No.	Course Code	Course Title	Teaching	Hrs/Week L:T:P:H	Total Credit	E	xaminatio Marks	on
140.	Coue		Dept.	L;1;Г;П	Crean	CIE	SEE	Total
1.	P17MAT31	Engineering Mathematics-III	Maths	3:2:0:5	4	50	50	100
2.	P17ME32	Material Science & Metallurgy	Mechanical	4:0:0:4	4	50	50	100
3.	P17ME33	Fluid Mechanics	Mechanical	4:0:0:4	4	50	50	100
4.	P17ME34	Manufacturing Process-I	Mechanical	4:0:0:4	4	50	50	100
5.	P17ME35	Basic Thermodynamics	Mechanical	4:0:0:4	4	50	50	100
6.	P17ME36	Computer Aided Machine Drawing	Mechanical	0:0:6:6	3	50	50	100
7.	P17MEL37	Fluids Measurement Lab	Mechanical	0:0:3:3	1.5	50	50	100
8.	P17MEL38	Foundry & Forging Lab	Mechanical	0:0:3:3	1.5	50	50	100
9	P17HU DIP 39	Comprehensive Communication Development(CCD)	HS & M	2:0:0:2	[2]	[50]	[50]	[100]
10	P17HU39	**Aptitude and Reasoning Development - BEGINNER (ARDB)	HS&M	2:0:0:2	0	(50)		
11	P17HU DIP 310	* Indian Constitution, Human Rights & Professional Ethics	Human& Science	2:0:0:2	0			
12	P17MA DIP 31	*Additional Maths-I	Maths	4:0:0:4	0			
		Total			26[28]	400[450]	400[450]	800[900]
* /	Additional Math	ematics-I & Constitution of India and	d Profession	al Ethics : <u>I</u>	ateral o	entry stud	<u>ents</u> shall	have to
		pass these mandatory learning cou		-				
	** ARDB: <u>All s</u> t	<u>tudents</u> shall have to pass this mandat	tory learning	courses be	fore cor	npletion o	of VI- Sen	nester

	Scheme of Teach	ing and Examination		IV Sem	nester B.I	E. (ME	<u>E)</u>	
Sl. No.	Course Code	Course Title	Teaching Dept.	Hrs/ Week	Total Credit		amina Mark	s
110.	Couc		Dept.	L:T:P:H	cicuit	CIE	SEE	Total
1.	P17MAAC41 ⁺ / P17MAES41 ⁺⁺	Engineering Mathematics-IV	Maths	3:2:0:5	4	50	50	100
2.	P17ME42	Applied Thermodynamics	Mechanical	4:0:0:4	4	50	50	100
3.	P17ME43	Mechanical Measurements & Metrology	Mechanical	4:0:0:4	4	50	50	100
4.	P17ME44	Mechanics of Materials	Mechanical	4:0:0:4	4	50	50	100
5.	P17ME45	Kinematics of Machinery	Mechanical	4:0:0:4	4	50	50	100
6.	P17ME46	Manufacturing Process –II	Mechanical	4:0:0:4	3	50	50	100
7.	P17MEL47	Metrology & Measurements Laboratory	Mechanical	0:0:3:3	1.5	50	50	100
8.	P17MEL48	Basic Material Testing Laboratory	Mechanical	0:0:3:3	1.5	50	50	100
9	P17HU49	Aptitude and Reasoning Development – Intermediate (ARDI)	HS&M	2:0:0:2	1	50	50	100
10	P17EV DIP 410	*Environmental Studies	ENV	2:0:0:2	0			
11	P17MA DIP 41	*Additional Maths-II	Maths	4:0:0:4	0			
		Total			27	450	450	900
* Ac	lditional Mathema	atics-II & Environmental Studies: <u>Lat</u>	teral entry stud	<u>ents</u> shall ha	ve to pa	ss thes	e man	datory
	ning courses befor	e completion of VI- Semester		—	-			1
	⁺ Common to	BE (AU, CV, ME and I&PE)	++ Comm	non to BE (CS	S, <u>EC, E</u> &	E and	IS&E))

Course Title: Engineering Mathematics-III(Common to All Branches)Course Code: P17MA31Semester: IIIL-T-P-H: 3-2-0-5Credits: 04
Course Code: P17MA31 Semester: III L-T-P-H: 3-2-0-5 Credits: 04
Contact Period - Lecture: 52Hrs .; Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Prerequisites: The student should have acquired the knowledge of Engineering Mathematics-I & II of I
and II semester B.E.
Relevance of the Course:
Engineering Mathematics-III deals with the Numerical methods to solve interpolation and
extrapolation problems in engineering field. In Fourier series analyze engineering problems arising in control theory and fluid flow phenomena using harmonic analysis
Analyze the engineering problems arising in signals and systems, digital signal processing using Fourier transform techniques. Z-transforms & Z-transforms of standard functions to solve the specific problems by using properties of Z-transforms. Identify and solve difference equations arising in engineering applications using inverse Z– transforms techniques Partial Differential Equations (PDE's), order, degree and formation of PDE's and, to solve PDE's by
various methods of solution. One- dimensional wave and heat equation and Laplace's equation and
physical significance of their solutions to the problems selected from engineering field
Course Content
UNIT-I
Numerical Methods-I: Finite differences: Forward and Backward differences, Gregory- Newtonforward and backward interpolation formulae, Newton's divided difference formula, Lagrange'sinterpolation formula and inverse interpolation formula. (All formulae without proof) – Problems onlyCentral differences: Gauss Forward and Backward difference formulae, Sterling's, and Bessel'sformulae (All formulae without proof) – problems.10 HrsSelf-Study Component: Problems using Everett's formula in Central differences
UNIT-II
Numerical differentiation using Newton's forward and backward interpolation formulae, Newton's divided difference formula and Sterling's formula (All formulae without proof)-problems only and Applications to Maxima and Minima of a tabulated function. Numerical integration: Newton- Cotes quadrature formula, Trapezoidal rule, Simpson's (¹ / ₃) rd rule, Simpson's (³ / ₈) th rule, Boole's rule and Weddle's rule (All rules without proof)- Illustrative problems. 10 Hrs
Self-Study Component: Derive Newton- Cotes quadrature formula.
UNIT-III Fourier series: Periodic functions, Fourier series- Euler's formula, Dirichlet's conditions. Fourier series of discontinuous functions, Fourier series of even and odd functions. Change of interval- Fourier series of functions of arbitrary period. Half–range Fourier series expansions, Fourier series in complex form, Practical harmonic analysis- Illustrative examples from engineering field. 11 Hrs
Self-Study Component: Derivations of Euler's formulae
UNIT-IV
Fourier Transforms: Infinite Fourier transforms-properties. Fourier sine and Fourier cosine transforms, properties. Inverse infinite Fourier and inverse Fourier sine & cosine transforms –
Illustrative examples.
Difference equations and Z-transforms: Definition of Z-transforms- standard Z-transforms, linearityproperty, damping rule, shifting rules, initial value theorem and final value theorem (All rules andtheorems without proof). Inverse Z – transforms. Difference equations- basic definitions. Applicationof Z-transforms to solve difference equations.10 HrsSelf-Study Component: Convolution theorem, Parseval's identities.related problems.
Sen-Study Component. Convolution incorem, raiseval sidentities.telated problems.

UNIT-V

Partial differential equations (PDE's):

Formation of PDE's. Solution of non-homogeneous PDE by direct integration. Solutions of homogeneous PDE involving derivative with respect to one independent variable only (both types with given set of conditions). Method of separation of variables (first and second order equations). Solution of the Lagrange's linear PDE's of the type: Pp + Qq = R.

Applications of PDE's:

One- dimensional wave and heat equations (No derivation), and various possible solutions of these by the method of separation of variables. D'Alembert's solution of wave equation. Two dimensional Laplace's equation (No derivation)-various possible solutions. Solution of all these equations with specified boundary conditions (Boundary value problems). Illustrative examples from engineering field. 11 Hrs

Self-Study Component: Finding the solution of non-linear equations of first order: Charpit's Method - simple problem.

Text Books

Higher Engineering Mathematics: B.S. Grewal, Khanna Publishers, New Delhi, 42nd Ed.2012.
 Advanced Engineering Mathematics: - E. Kreyszig, John Wiley & Sons, 6th Ed.2007.

Reference Books

1. Advanced Modern Engineering Mathematics: - Glyn James, Pearson Education Ltd., 3rd Ed., 2007.

- 2. Advanced Engineering Mathematics: Peter V O' Neil Thomson, Brooks/Cole, 5th edition, 2007.
- 3. Higher Engineering Mathematics: B.V. RAMANA, McGraw Hill Education, 2007

Note: - Each unit contains *two* full questions of *20 marks* each. Students are required to Answer *five* full questions choosing at least *one* question from each unit.

Course Outcomes

After learning all the units of the course, the student is able to;

- 1.Apply forward, backward difference formulae and central differences formulae in solving interpolation- extrapolation problems in engineering field.
- 2.Apply Numerical differentiation and integration rules in solving engineering where the handling of numerical methods is inevitable.
- 3.Recognize the importance of Fourier series & Fourier transforms, difference equations and Ztransforms in the field of signals and systems, communication and network theory signal and image processing, control theory, flow & heat transfer and theory of elasticity.
- 4.Learn modeling in terms of partial differential equations and also, learn different exact/analytical methods of solving with special emphasis on interpretation of the solution.
- 5. Interpret the solution of one-dimensional wave, heat and Laplace equations with given initial and boundary conditions in the context of various engineering and technological applications.

	Cou	rse A	rtic	ulat	tion	Ma	atri	X						
]	Prog	gra	m C)uto	com	es				PS	50
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	1	2												
CO2	2	2												
CO3	3	3												
CO4	2	3												
CO5	2	3												

Course	Title: Material Sc	ione	a and Matalluray	
Course Code: P17ME32	Semester: III		L-T-P-H: 0-0-0-0	Credits: 04
Contact Period - Lecture: 52H		W		
	rs. Exam: SHrs	we	eightage: CIE: 50 %;	SEE: 50%
Course Objectives:	a students to eagu	ro h	asia knowladza about	lattica arrangement
This course aims to facilitate th of atoms in materials, their	-		0	0
advanced heat treatment proces				
information on corrosion, non f	-	-	• 1	idents to expose to
	Course Co			
	UNIT		ut	
Structure of Crystalline Soli			ents of unit cell sna	ce lattice Bravaias
lattice, Unit cells for cubic stru				
structures and HCP, Calculation		•	•	
for different cubic structures.				1 0
Diffusion Mechanisms and Fiel	• 1		point, inte, surface e	11 Hrs
Self study component: Differe			ous and crystalline sol	
	UNIT		,	
Mechanical characteristics	of metals: Tensi	le p	properties, true stres	s and true strain,
Hardness, Rockwell, Vickers				
twinning. Fracture type, stages				
Fatigue test, S-N curves, fact	ors affecting fatig	gue l	life and protection n	nethods. The creep
curves, Mechanism of creep.				10 Hrs
Self study component: Creep 1	resistant materials			
	UNIT-	III		
Solid Solution and Phase Di	agrams: Solid so	lutio	ons, Rules governing	formation of solid
solutions, Phase diagram- Ba	-		-	
diagrams, interpretation of equi	-	• •	-	
Iron Carbon Equilibrium Di	0		•	
temperatures, Microstructures	•			
diagram, ferrite and austenite		I'I' c	liagram, drawing of	
diagram for hypo & hyper euter				11 Hrs
Self study component: Effect			i CCT diagram	
	UNIT-			· · · · · · · · · · · · · · · · · · ·
Heat Treatment: Annealing an	• •			
austempering, surface hardenin	U U	g, ca	rourizing, cyaniding,	U
hardening, hardenabilty, Jomin		n oll	01/0	10 Hrs
Self study component: Age ha	UNIT		oys	
Engineering Alloys: Propertie			as of low carbon m	ild modium & high
carbon steels. Steels designation	· •			0
malleable CI, SG iron. Microst			0	
Copper & its alloys: brasses &		5115.	Light anoys. Al, Mg	& Thanhum anoys.
Composite materials: Introduce		n F	Fabrication Methods	Characteristics of
each type.	chon, chussineune	, ii, i	doneution methods,	10 Hrs
Self study component: Applic	ation of titanium a	llovs	and Composite mate	
Text Books				
1. Willian D. Callister Jr., "M	aterials Science a	nd I	Engineering – an In	troduction". John
Wiley India Pvt.Ltd, New Dell				
2. Donald R. Askeland, Pradee				
CL Engineering,2 nd Edition, 20				5 8/

Reference Books

- **1.**James F. Shackel ford, "Introduction to Material Science for Engineering", 6th edition Pearson, Prentice Hall, New Jersy, 2006.
- **2.** Raghavan, **"Physical Metallurgy, Principles & Practices"**, PHI 2nd Edition, New Delhi, 2006, ISBN: 978-8120330129

3. Smith, **"Foundations of Materials Science and Engineering"** 3rd Edition McGraw Hill, 1997

Course Outcomes

After learning all the units of the course, the student is able to;

1.Explain the internal Structure of Crystalline Solid, Stacking of layers, Coordination Number and Atomic Packing Factor for different crystal structure, Crystal imperfections and diffusion.

2.Explain the concept of Stress and strain, Hardness and plastic deformation.

3.Analyze phase diagram and Iron Carbon Equilibrium diagrams.

4.Explain heat treatment process to improve the physical and mechanical properties of different types of engineering materials.

5.Explain the concept of corrosion and different methods of prevention of corrosion.

6.Explain microstructures and different types of alloys.

	Course Articu	lati	on	Мa	trix	C C									
				P	rog	ran	n ()	utco	om	es				PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Explain the internal Structure of Crystalline Solid, Stacking of layers, Coordination Number and Atomic Packing Factor for different crystal structure, Crystal imperfections and diffusion.	3	2					1						1	-
CO2	Explain the concept of stress and strain, Hardness and plastic deformation.	3	3	2										1	-
CO3	Analyze phase diagram and Iron Carbon Equilibrium diagrams.	3	2		2									1	-
CO4	Explain heat treatment process to improve the physical and mechanical properties of different types of engineering materials.	3		2		2	1							1	-
CO5	Explain microstructures and different types of alloys.Explain fabrication methods of Composite materials	3		1			2							1	1

	Course Title: Flui	d Me	chanics	
Course Code: P17ME33	Semester: III		L-T-P-H: 3-2-0-5	Credits: 04
Contact Period - Lecture: 52Hr	rs.; Exam:3Hrs.	Wei	ghtage: CIE: 50 %;	SEE: 50%
Course Objectives:				
The course aims to cover the	basic principles a	and e	quations of fluid m	nechanics and their
applications to the various engi	neering fields invo	olving	g fluid flow problem	is so as to motivate
the students to use fluid mechar	nics in engineering	pract	ice.	
	Course Co	nten	t	
	UNIT	·I		
Properties of fluids: Introduct	ion, properties of	fluids	s, viscosity, Newton	's law of viscosity.
Surface tension, capillarity, va	por pressure and c	avita	tions. Pascal's law,	Fluid pressure at a
point, pressure variation in a sta	tic fluid, absolute,	gaug	e, atmospheric & vao	cuum pressures.
C-16-41				11Hrs

Self study component: Bourdon's tube Pressure gauge and Bellows Pressure gauge

UNIT-II

Fluid statics: Simple manometers and differential manometers. Total pressure, centre of pressure in vertical and inclined plane surfaces and curved surfaces submerged in liquid. Buoyancy, Buoyant force, and centre of buoyancy. Meta centre and metacentric height (analytical method only). Stability of submerged and floating bodies. 10Hrs Self study component: Experimental method of finding metacentric height

UNIT-III

Fluid kinematics: Types of Fluid flow, continuity equation in three dimensions (Cartesian coordinate system only) and velocity and acceleration, velocity potential function, stream function and flow net.

Fluid Dynamics: Euler's equation of motion, Bernoulli's equation derived from fundamental principles & Euler's equation, Bernoulli's equation for real fluids. Fluid Flow measurements: Venturi meter, Orifice meter. 10Hrs

Self study component: Flow measurement using Pitot tube and its types

UNIT-IV

Flow past immersed bodies: Drag, lift, expression for lift and drag, pressure drag and friction drag, boundary layer concept. Displacement thickness, momentum thickness and energy thickness. Flow Through Pipes: Frictional losses in pipe flow, Darcy and Chezy equations for loss of head due to friction in pipes, hydraulic gradient & total energy line. 10Hrs Self study component: Minor losses in flow through pipes

UNIT-V

Laminar flow and viscous effects: Reynold's number, critical Reynold's number, laminar flow through a round pipe- Hagen-Poisuille's equation, laminar flow between parallel stationery plates.

Dimensional Analysis: Introduction, derived quantities, Dimensions of physical quantities, dimensional homogeneity-Buckingham's π theorem, the Rayleigh's method. **11Hrs Self study component:** dimensionless numbers and its significance

Text Books

1.Dr. Jagadish Lal **"Fluid Mechanics and Hydraulics"** Metropolitan Book Co. Pvt. Ltd, New Delhi, 2002, ISBN: 9788120002722

2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications Ltd., New Delhi. 9th edition, 2015, ISBN: 9788131808153.

Reference Books

1.K. W. Bedford, Victor Streeter, E. Benjamin Wylie "Fluid Mechanics" Tata Mcgraw Hill Education Private Limited, 9th edition, 1997, ISBN: 9780070625372

2.Dr.K.L.Kumar, "Engineering Fluid Mechanics" S Chand Lltd., 2010, ISBN:

9788121901000

- 3.Dr.R.J.Garde and Dr.A.J.Mirajgaonkar "Engineering Fluid Mechanics" ScitechPublications (India) Chennai, 2010, ISBN: 9788188429011.
- 4.Frank M.White "Fluid Mechanics" Tata Mcgraw Hill Education Private Limited, 7th edition, 2011, ISBN: 9780071333122

Course Outcomes

After learning all the units of the course, the student is able to;

- 1.**Explain** fluid properties like density, weight density, specific volume, specific gravity, viscosity and surface tension. **Solve** problems on viscosity and surface tension.
- 2. **Derive** Pascal's law and fundamental law of hydrostatics and **Explain** buoyancy and centre of buoyancy.
- 3.**Describe** the types of fluid flow and **solve** problems on continuity equation, Euler's equation of motion and Bernoulli's equation.
- 4. Explain boundary layer concept and define hydraulic gradient line and total energy line.
- 5.**Derive** Hagen-Poiseuille equation and **apply** dimensional analysis technique to obtain dimensionless relations.

	Course Articul	lati	on I	Ma	trix	C C									
				P	rog	rai	m ()ut	tco	me	S			PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Explain fluid properties like density, weight density, specific volume, specific gravity, viscosity and surface tension. Solve problems on viscosity and surface tension.	2	2		2									-	-
CO2	Derive Pascal's law and fundamental law of hydrostatics and Explain buoyancy and centre of buoyancy.	2	2											-	-
CO3	Describe the types of fluid flow and solve problems on continuity equation, Euler's equation of motion and Bernoulli's equation.	2	2		2									-	-
CO4	energy line.	2	2											-	-
CO5	Derive Hagen-Poiseuille equation and apply dimensional analysis technique to obtain dimensionless relations.	2	2		2									-	-

Course Title: Manufacturing Process - I
Course Code: P17ME34Semester: IIIL-T-P-H:4-0-0-4Credits: 04
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Objectives: This course aims to facilitate the students to acquire basic knowledge
about Casting, Welding process and metal cutting theory which are relevant to manufacturing
of engineering components.
Course Content
UNIT-I
Introduction: Concept of Manufacturing process, Casting process: Introduction, Steps involved, Varieties of components produced by casting process, Advantages & Limitations of casting process. Introduction to furnace, Classification of furnaces. Patterns: Definition, functions, Materials used for pattern, various pattern allowances and their importance. Classification of patterns. Binder: Definition, Types of binders used in moulding. 12Hrs
Self study component: Need of additives, Types of additives
UNIT-II
 Sand Moulding: Types of sand moulds, ingredients of moulding sand and Properties, core sands, ingredients properties, Core making, Core baking – Dielectric baking of cores, Principles of Gating: Elements of gating system, types of gates, gating ratio, function of risers, types of risers – open and blind risers. Types of defects in Castings, Causes and remedies. Special Moulding Process : CO₂ moulding, Shell moulding, Investment casting, permanent
mould casting :Gravity die-casting, Pressure die casting, centrifugal casting, Injection
moulding, Squeeze Casting. 10Hrs
Self study component : Thixocasting, Slush casting and continuous casting processes.
 Special Types of Welding: Resistance welding - principles, Seam welding, Thermit welding, Spot welding, projection welding, Friction welding, Explosive welding, and Brazing-Methods of Brazing. Metallurgical Aspect in Welding: Structure of welds, Formation of different zones during
welding, Heat affected zone (HAZ), Parameters affecting HAZ, Shrinkage in welds & Residual stresses. Weld ability and Weld ability testing. 10Hrs Self study component: Welding defects: causes, detection and remedy.
UNIT-IV
Theory of Metal Cutting: Single point cutting tool nomenclature, geometry, orthogonal and oblique cutting, mechanism of chip formation, types of chips, Merchants circle diagram and analysis, Ernst Merchant's solution, shear angle relationship, problems of Merchant's analysis Cutting Tool Materials: Desired properties, types of cutting tool materials – HSS, carbides coated carbides CBN, PCD and ceramics Heat generation in metal cutting, factors affecting heat generation, measurement of tool tip temperature. 10Hrs Self study component: Cutting Fluids: Desired properties, types and selection
UNIT-V
Tool Wear: Causes and types of tool wear, effects of cutting parameters on tool life, tool failure criteria, Taylor's tool life equation, problems on tool life evaluation.Mechanisms of machines : Turret Lathe Mechanism, Calculation of change of gears in thread cutting, Driving Mechanism of shaper and planer, Simple and compound indexing calculations, specification of grinding wheel, selection of grinding wheel, balancing of grinding wheel.Self study component:Super Finishing, Lapping, and honing

Text Books1. P.N.Rao, "Manufacturing & Technology: Foundry Forming and Welding", Tata
McGraw Hill, 2nd Edition, 2013, ISBN: 9789383286614

2. Dr.K.Radhakrishna, **"Manufacturing Process-I"**, 5th Ed ,Sapna Book House, 2006, ISBN: 8128002074

Reference Books

- 1. Serope Kalpakjian & Steven R Schmid, **"Manufacturing Engineering and Technology"**, Pearson Education Asia, 4th Edition, 2002, ISBN: 9788177581706
- 2. Roy A Lindberg, "**Process and Materials of Manufacturing**" Prentice Hall, 4th Edition, 1998, ISBN: 9780205118175

Course Outcomes

After learning all the units of the course, the student is able to;

- 1. **Explain** the steps involved in casting processes
- 2. Distinguish between various casting processes
- 3. Explain special types of welding processes.
- 4. Merchants circle diagram and
- 5. Tool life, Mechanism of machines.

	Course Articul	ati	on 1	Ma	tri	X									
				F	Pro	gra	m	Ou	tco	me	S			PS	50
	Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Explain the steps involved in casting processes	2	1	1										H	-
CO2	Distinguish between various moulding processes	2	1	1										-	-
CO3	Explain special types of welding processes.	2	1	1										-	1
CO4	Analyze shear angle using Merchants circle diagramExplain various types of cutting tool materials	3	2	1										-	1
CO5	Estimate Tool life and Describe Mechanism of machines.	2	2	1										-	2

Course Title: Basic Tl	hermodynamics
Course Code: P17ME35 Semester: III	L-T-P-H: 0-0-0-0 Credits:
Contact Period - Lecture: 52Hrs. Exam: 3Hrs.	Weightage: CIE: 50 %; SEE: 50%
Course Objectives: The course aims at to cover	the basic principles of thermodynamics,
give students a feel for how thermodynamics is ap	plied in engineering practice and to develo
an intuitive understanding of thermodynamics	by emphasizing the physics and physic
arguments.	
Course Co	
UNIT-	
Fundamental Concepts & Definitions: Definit	•
Macroscopic approaches to the study of therm	•
system) and Control Volume (open system) with	
property, Intensive and extensive properties, t	
process, thermodynamic cycle. Thermodynamic e	
and mechanical equilibrium. Zeroth law of therr simple numerical problems on measurement of	
work, sign convention .Work done at the system	1 7
for work done in different processes. Definition of	
of work and heat. Simple numerical problems on v	
Self study component: examples to illustrate the	
UNIT-J	
First Law of Thermodynamics: Statement of th	e First law of thermodynamics for a close
system undergoing a cyclic process. First law of t	thermodynamics for a change of state of th
system and concept of energy. Energy as a proper	ty of the system and its significance. Simpl
numerical problems on systems undergoing closed	d process.
Steady flow process, First law applied to stead	
energy equation and its applications. Simple nu	
steady flow process.	10 Hrs
Self study component: Definition and significance	e of Internal Energy, Enthalpy and Specific
heats	
UNIT-I	
Pure substances: Definition of pure substance, t	
Temperature-Volume diagram, definitions of Su saturated vapor and superheated vapor. Pressure-	1
point and critical point. Enthalpy of changes o	1 0 1
diagram, definition of sensible heat, latent heat an	
steam and definition of Dryness fraction. Meas	
calorimeter, throttling calorimeter, separating	•
calorimeter. Simple problems on measurement of	0 1
Self study component: Use of Steam tables.	
UNIT-I	V
Second Law of Thermodynamics: Thermal res	servoir. Source and sink. Heat engine, he
pump and refrigerator. Efficiency and coefficient	
Clausius statement of the Second law of the	rmodynamics and equivalence of the ty

pump and refrigerator. Efficiency and coefficient of performance. Kelvin – Planck and Clausius statement of the Second law of thermodynamics and equivalence of the two Statements. Definition of perpetual motion machines of II kind with example. Reversible and Irreversible processes. Reversible heat engine - Carnot Cycle and expression for efficiency of Carnot cycle. Simple numerical problems on heat engines and heat pumps. **10 Hrs Self study component:** Factors that makes a process irreversible.

UNIT-V

Entropy: Clausius Inequality: Statement, and proof. Entropy: Definition, entropy as a property of the system. Principle of increase of entropy. Entropy as a quantitative test for

irreversibility. Expression for entropy using T-dS relations, Calculation of entropy ch different thermodynamic cyclic process. Equation of state, internal energy and e specific heats. Simple numerical problems based on heat, work, internal energy, enth entropy change in various processes. 11 Hi Self study component: Universal and characteristic gas constants Text Books 1. P. K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Editi 2006, ISBN: 9780070260627 2. R K Rajput, "Engineering Thermodynamics" Laxmi Publications Pvt Ltd, 3 rd E 2011, ISBN: 9789380298405 3. Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1 st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books 1. Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 2. Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGri Featured Edition, 2001, ISBN: 9780072383324 3. Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2 nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understand the properties of pure substances. 4. Understand the properties of pure substances. 5. Calculate entropy for various simple real life systems 5. Calculate entropy for various simple real life systems 5. Calculate entropy for various simple real life systems
Text Books 1. P. K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Editi 2006, ISBN: 9780070260627 2. R K Rajput, "Engineering Thermodynamics" Laxmi Publications Pvt Ltd, 3 rd E 2011, ISBN: 9789380298405 3. Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1 st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books 1. Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 2. Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGra Featured Edition, 2001, ISBN: 9780072383324 3. Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2 nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
Text Books 1. P. K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Editi 2006, ISBN: 9780070260627 2. R K Rajput, "Engineering Thermodynamics" Laxmi Publications Pvt Ltd, 3 rd E 2011, ISBN: 9789380298405 3. Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1 st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books 1. Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 2. Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGra Featured Edition, 2001, ISBN: 9780072383324 3. Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2 nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
 P. K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Editi 2006, ISBN: 9780070260627 R K Rajput, "Engineering Thermodynamics" Laxmi Publications Pvt Ltd, 3rd E 2011, ISBN: 9789380298405 Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGra Featured Edition, 2001, ISBN: 9780072383324 Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Calculate entropy for various simple real life systems
 2006, ISBN: 9780070260627 2. R K Rajput, "Engineering Thermodynamics" Laxmi Publications Pvt Ltd, 3rd E 2011, ISBN: 9789380298405 3. Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGra Featured Edition, 2001, ISBN: 9780072383324 Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 After learning all the units of the course, the student is able to; Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. Understand the properties of pure substances. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Caurse Outcomes
 2011, ISBN: 9789380298405 Mahesh M Rathore, "Thermal Engineering" McGraw Hill Pvt Ltd., 1st Edition, Delhi, 2010, ISBN: 9780070681132 Reference Books Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGraetaured Edition, 2001, ISBN: 9780072383324 Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat RaNew Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; Understand the basic concepts and definitions used in engineering thermodynamics to be energy systems. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Calculate entropy for various simple real life systems Course Articulation Matrix
Delhi, 2010, ISBN: 9780070681132 Reference Books 1. Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 2. Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGri Featured Edition, 2001, ISBN: 9780072383324 3. Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2 nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
 Spalding and Cole, "Engineering Thermodynamics" ELBS Publications, 1985, 9780713133141 Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGr Featured Edition, 2001, ISBN: 9780072383324 Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 <u>Course Outcomes</u> After learning all the units of the course, the student is able to; Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. Understand the properties of pure substances. Understand the properties of pure substances. Understand the properties of pure substances. Ealer entropy for various simple real life systems Calculate entropy for various simple real life systems
 9780713133141 2. Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGre Featured Edition, 2001, ISBN: 9780072383324 3. Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems
 Yunus A. Cenegal, "Thermodynamics – An engineering approach" Tata McGre Featured Edition, 2001, ISBN: 9780072383324 Van and Wylen, "Fundamentals of Classical Thermodynamics" Wiley Easter limited, 2nd Edition, 1976, ISBN: 9780471902294 Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 <u>Course Outcomes</u> After learning all the units of the course, the student is able to; Understand the basic concepts and definitions used in engineering thermodynamics to b energy systems. Understand the properties of pure substances. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Calculate entropy for various simple real life systems
 limited, 2nd Edition, 1976, ISBN: 9780471902294 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 <u>Course Outcomes</u> After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynam Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Calculate entropy for various simple real life systems
 4. Domkundwar, Kothandaraman "A course in Thermal Engineering" Dhanpat Ra New Delhi, 2004, ISBN: 9788177000214 <u>Course Outcomes</u> After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynam 2. Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems <u>Course Articulation Matrix</u>
New Delhi, 2004, ISBN: 9788177000214 Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynam 2. Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
Course Outcomes After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynam 2. Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
 After learning all the units of the course, the student is able to; 1. Understand the basic concepts and definitions used in engineering thermodynamic 2. Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems
 Understand the basic concepts and definitions used in engineering thermodynam Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. Understand the properties of pure substances. Understanding of the second law of thermodynamics and analysis in different applications Calculate entropy for various simple real life systems Course Articulation Matrix
 2. Apply the first laws of thermodynamics and the concepts of thermodynamics to b energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
 energy systems. 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
 3. Understand the properties of pure substances. 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix Program Outcomes
 4. Understanding of the second law of thermodynamics and analysis in different applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix
applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix Program Outcomes Course Outcomes
applications 5. Calculate entropy for various simple real life systems Course Articulation Matrix Program Outcomes Course Outcomes
5. Calculate entropy for various simple real life systems Course Articulation Matrix Program Outcomes Course Outcomes
Course Articulation Matrix Program Outcomes Course Outcomes
Program Outcomes
Understand the basic concepts and
Understandthe basic concepts andCO1definitionsusedinengineering222
thermodynamics
Apply the first laws of thermodynamics
CO2 and the concepts of thermodynamics to $\begin{vmatrix} 2 & 2 & 2 \end{vmatrix} \begin{vmatrix} 2 & 2 & 2 \end{vmatrix}$
basic energy systems
basic energy systemsImage: Cost of pure substances.Image: Cost of pure substances.Image: Cost of pure substances.
CO3 Understand the properties of pure 2 2 2
CO3Understand the properties of pure substances.222Understanding of the second law of
CO3Understand substances.properties of pure 2222Understanding thermodynamics thermodynamicsof and analysiszzzz
CO3Understand the properties of pure substances.222Understanding of the second law of

Course Title: Computer Aided Machine Drawin	g
Course Code: P17ME36 Semester: III L-T-P-H: 0-0-6-0	5 Credits: 03
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50	
Course Objectives: The course aims at empowering the students with data	
strengthens their ability to draw, read and interpret machine part/assemble	ly using computer and
relevant software and following standards codes and norms.	
Course Content	
UNIT-I	
Introduction: Review of basic sketching commands and navigational c	
Sections Of Solids: Sections of Pyramids, Prisms, Cube, Tetrahedro	•
resting only on their bases (No problems on axis inclinations, sphere	es and hollow solids).
True shape of sections.	projections of simple
Orthographic Views : Conversion of pictorial views into orthographic machine parts with and without section. (Bureau of Indian standards	
followed for the drawings), Line conventions.	12 Hrs
UNIT-II	12 1115
Thread Forms: Thread terminology, sectional view of threads. IS	O Metric (Internal &
External), BSW (Internal & External), square and Acme threads, B	
thread, American Standard thread.	detress thread, beners
Fasteners: Hexagonal headed bolt and nut with washer (assembly), so	quare headed bolt and
nut with washer (assembly) simple assembly using stud bolts with nut a	1
	12 Hrs
UNIT-III	
Riveted Joints: Single and Double riveted lap joints, butt joints wit	h single/double cover
straps (chain and Zigzag, using snap head rivets).	12 Hrs
UNIT-IV	
Keys & Joints: Study of keys: Parallel key, Taper key, feather k Woodruff key.	ey, Gibhead key and
Joints: cotter joint (socket and spigot), knuckle joint (pin joint), Univer	sal joint.
Couplings: Protected type flanged coupling, pin (bush) type flex	xible coupling, Muff
coupling.	15 Hrs
UNIT-V	
Assembly Drawings	
Solids of Protrusion, Assembly drawing of following machine parts (1
and assemble and then getting 2D drawing with required views, including	ng part drawing).
Introduction to geometrical dimensioning and tolerance.	
1. Screw Jack 2. LC. Engine Connecting Red	
 I.C. Engine Connecting Rod Machine Vice 	
4. Plummer Block	
5. Fuel Injector	27 Hrs
	27 1115
Text Books	
1. N.D. Bhat and V.M.Panchal, "Machine Drawing", Charotar Publis	hing Hous, 46 th
Edition, 2011, ISBN: 9789380358390	44 1 1 1 1 1
2. N. Siddeshwar, P. Kannaiah and V.V.S. Sastri, "Machine Drawing	" published by Tata
Mc. GrawHill, 2010, ISBN: 9780074603376	dition 2000 ICDN.
3. Tryambaka Murthy, "Machine Drawing" , CBS Publications, 2 nd E 9788123916590	uiuon, 2008, ISBN:
9788123916390 Reference Books	
1. K.R. Gopala Krishna, "Machine Drawing", Subhash Publication, 1	st Edition 1084
1. K.K. Gopaia Kristina, Machine Drawing ¹ , Subhash Publication, 1	Euluon, 1904.

Course Outcomes

After learning all the units of the course, the student is able to;

- 1. Solve problems on sections of regular solids.
- 2. Convert pictorial views to orthographic views.
- 3. **Draw** 2D views of simple machine elements

4. Assemble the components of mechanical systems in 3D environment.

	Course Articul	ati	on	Ma	atri	x										
	Course Outcomes		Program Outcomes													
			2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	Solve problems on sections of solids.			3		3					1			-	-	
CO2	Convert pictorial views to orthographic views.			3		3					1			-	-	
CO3	Draw 2D views of simple machine elements			3		3					1			-	-	
CO4	Assemble the components of mechanical systems in 3D environment.			3		3					1			1	-	

Course Title: Fluids Measurement Laboratory	
	~
Course Code: P17MEL37 Semester: III L-T-P-H: 0-0-3-3 Credits: 1	
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE:	50%
Course Objectives: The course aims at enabling the students to understand the basic measurement techniques of fluid flow, fuels and lubricants properties.	
Course Content	
PART-A	
Exp-1	
Calibration of venturi meter and determination of its co-efficient of discharge	3Hrs
Exp-2 Calibration of orifice meter and determination of its co-efficient of discharge	3Hrs
Exp-3	311
Calibration of V-Notch for flow through a channel.	3Hrs
Exp-4 Determination of coefficient of friction in flow through pines	3Hrs
Determination of coefficient of friction in flow through pipes. Exp-5	51115
	Hrs
PART-B	
Exp-6	
Determination of Flash point and Fire point of lubricating oil using Abel Pensky and	Pensky
Apparatus.	3Hrs
Exp-7	
Determination of Viscosity of lubricating oil using Redwoods, Saybolts and	Torsion
Viscometers.	3Hrs
Exp-8	
Determination of Calorific value of solid fuel using Lewis Thomson calorimeter.	3Hrs
Exp-9	
Determination of Calorific value of gaseous fuels using Junkers Gas calorimeter.	4 H rc
	<u>3Hrs</u>
Seminar	6Hrs
Test	
	6Hrs
Test	6Hrs 3Hrs
 Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt. New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications 	6Hrs 3Hrs
 Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition 	6Hrs 3Hrs Ltd, Ltd.,
 Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt. New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9th edition, 2015, ISBN: 9788131808153. 	6Hrs 3Hrs Ltd, Ltd.,
Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9 th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627	6Hrs 3Hrs Ltd, Ltd.,
 Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627 	6Hrs 3Hrs Ltd, Ltd.,
Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9 th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627 Course Outcomes After learning all the units of the course, the student is able to; 1.Calibrate venturimeter, orificemeter and V-notch.	6Hrs 3Hrs Ltd, Ltd.,
Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9 th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627 Course Outcomes After learning all the units of the course, the student is able to;	6Hrs 3Hrs Ltd, Ltd.,
Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9 th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627 Course Outcomes After learning all the units of the course, the student is able to; 1.Calibrate venturimeter, orificemeter and V-notch.	6Hrs 3Hrs Ltd, Ltd.,
Test Reference Books 1.Dr. Jagadish Lal "Fluid Mechanics and Hydraulics" Metropolitan Book Co. Pvt New Delhi, 2002, ISBN: 9788120002722 2.Dr. R.K.Bansal, "Fluid mechanics and hydraulic machines" Laxmi publications New Delhi. 9 th edition, 2015, ISBN: 9788131808153. 3.P.K. Nag, "Basic and Applied Thermodynamics" Tata McGraw Hill, 3rd Edition ISBN: 9780070260627 Course Outcomes After learning all the units of the course, the student is able to; 1.Calibrate venturimeter, orificemeter and V-notch. 2.Determine friction coefficient for fluid flow in pipes.	6Hrs 3Hrs Ltd, Ltd.,

	Course Articulation Matrix														
	Course Outcomes	Program Outcomes													50
			2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Calibrate venturimeter, orificemeter and V-notch.	3	1		3						2			-	-
CO2	Determine friction coefficient for fluid flow in pipes.	3	1	2	3						2			-	-
CO3	Determine the efficiencies of vertical, inclined and curved vanes.	1	1		3						2			-	-
CO4	Determine properties like Flash point, Fire point and Viscosity of lubricating oil.		2	2	3						2			-	1
CO5	Estimate Calorific value of solid and gaseous fuels	1	2	2	3						2			-	-

Course Code: P17MEL38 Semester: III		or	ging I	Lab	ora	itoi	۲V						
			L-T-]					(Cre	dits	s: 1	.5	
Contact Period - Lecture: 52Hrs. Exam: 3Hrs.		We	eighta	ge:	CII	E: 1	50 9	%;			SE	E: 5	0%
Course Objectives: The course aims at enabl	ng th		0	<u> </u>					al	knc			
about preparation of components through sand												0	
Course				0	0	1							
	RT-A		-										
Exp-1													
Use of foundry tools and equipments.												3	Hrs
Exp-2													
Preparation of moulds using two boxes.Use of	f pati	ern	s: spli	it pa	atte	rn,	ma	tch	pla	ate	pat	tern	and
cores. Mould cavity volume calculations.	-		-	-					-	6	Hr	S	
Exp-3													
Preparation of casting: Aluminium or cast iro	n (de	moi	nstrati	on	onl	y).						6 H	[rs
PA	RT-B	5											
Exp-4													
Use of forging tools and equipments.												3	Hrs
Exp-5													
Preparing minimum three models involving up	osetti	ng,	drawi	ng	and	be	ndi	ng	op	pera	atio	ns,	
along with length and volume calculations.												12	Hrs
Seminar												3	Hrs
Test												3	Hrs
Reference Books													
1.Serope Kalpakjian & Steven R Schmid, "N	anut	Co of	•		•								
							ring	g a	nd	Te	chı	ıoloş	gy",
Pearson Education Asia, 7 th edition, 2013, I	SBN	: 97	8-013	312	287	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology	SBN	: 97	8-013	312	287	41.							
 Pearson Education Asia, 7th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. 	SBN : Foi	: 97 1nd	8-013 ry Fo	312	287	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. <u>Course</u>	SBN : Foi <u>Outc</u>	: 97 1nd 0m	8-013 ry Fo	312 orm	287	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the st	SBN : For <u>Outc</u> ident	: 97 1nd 0m	8-013 ry Fo	312 orm	287	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand	SBN For Outc Ident	: 97 1nd omo is a	8-013 ry Fo es able to	3312 orm	287- 1 ing	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alu	SBN For Outc Ident	: 97 1nd omo is a	8-013 ry Fo es able to	3312 orm	287- 1 ing	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forget	SBN For Outc Ident	: 97 1nd omo is a	8-013 ry Fo es able to	3312 orm	287- 1 ing	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the stu 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forged 4. Prepare simple forged components.	SBN For Outc ident niniu ng.	: 97 1nd 0m is a m/0	8-013 ry Fo es able to Cast In	312 orm); ;	287- 1 ing	41.							
Pearson Education Asia, 7 th edition, 2013, 1 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forget	SBN For Outc ident niniu ng.	: 97 1nd 0m is a m/0	8-013 ry Fo e <u>s</u> able to Cast In Matri	312 orm o; con.	287 iing	41. g a	nd	W (eld			2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forget 4. Prepare simple forged components. Course Artice	SBN For Outc ident niniu ng.	: 97 1nd 0m is a m/0	8-013 ry Fo es able to Cast In	312 orm o; con.	287 iing	41. g a	nd	W (eld			2nd	
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology <u>Tata McGraw Hill, 2003.</u> <u>Course</u> After learning all the units of the course, the stu 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forged 4. Prepare simple forged components.	SBN For Outc ident niniu ng.	: 97 1nd 0m is a m/0	8-013 ry Fo e <u>s</u> able to Cast In Matri	312 5 5 5 7 7 7 7 7 7 7 7	287 iing	41. g a	nd	W(eld s	ing		2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forg 4. Prepare simple forged components. Course Artic	SBN For Outc Ident niniu ng.	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo e <u>s</u> able to Cast In <u>Matri</u> Pro	312 5 5 5 7 7 7 7 7 7 7 7	287- iing m (41. g a	nd	W(eld s	ing		2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. Course After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forging 4. Prepare simple forged components. Course Artice Course Outcomes	SBN For Outc Ident niniu ng.	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo e <u>s</u> able to Cast In <u>Matri</u> Pro	312 5 5 5 7 7 7 7 7 7 7 7	287- iing m (41. g a	nd	W(eld s	ing		2nd	Ed.,
Pearson Education Asia, 7th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. Course After learning all the units of the course, the str 1.Prepare casting moulds using foundry sand 2.Prepare simple cast components using Alur 3.Calculate the material requirement for forgi 4.Prepare simple forged components. Course Artic Course Outcomes Prepare casting moulds using foundry sand.	SBN For Outc Ident niniu ng.	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo es able to Cast In Matri Pro 3 4	312 orm o ; con . x gra 5	287- iing m (41. g a	nd	W(eld s	ing		2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. <u>Course</u> After learning all the units of the course, the str 1. Prepare casting moulds using foundry sand 2. Prepare simple cast components using Alua 3. Calculate the material requirement for forge 4. Prepare simple forged components. <u>Course Artice</u> <u>Course Outcomes</u> <u>Course Prepare</u> casting moulds using foundry sand. <u>Course Prepare</u> simple cast components	SBN For Outc Ident niniu ng.	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo es able to Cast In Matri Pro 3 4	312 orm o ; con . x gra 5	287- iing m (41. g a	nd	W(eld s	ing		2nd	Ed.,
Pearson Education Asia, 7th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. Course After learning all the units of the course, the str 1.Prepare casting moulds using foundry sand 2.Prepare simple cast components using Alur 3.Calculate the material requirement for forgit 4.Prepare simple forged components. Course Artice Course Outcomes Course Outcomes Prepare casting moulds using foundry sand. CO1 Prepare casting moulds using foundry sand. CO1 Prepare simple cast components using Alur using Aluminium/Cast Iron.	SBN For Ident niniu ng. Ulati	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo es able to Cast In Matri Pro 3 4 3 1	312 orm o; con. x gra 5 1	m (41. g a	nd	me 9	eld s	ing		2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. Course After learning all the units of the course, the str 1.Prepare casting moulds using foundry sand 2.Prepare simple cast components using Aluri 3.Calculate the material requirement for forgit 4.Prepare simple forged components. Course Artice Course Outcomes Course Outcomes Outry sand. CO1 Prepare casting noulds using Aluminium/Cast Iron. Coalculate the material requirement for	SBN For Ident niniu ng. Ulati	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo es able to Cast In Matri Pro 3 4 3 1	312 orm o; con. x gra 5 1	m (41. g a	nd	me 9	eld s	ing		2nd	Ed.,
Pearson Education Asia, 7 th edition, 2013, I 2. P. N. Rao, "Manufacturing Technology Tata McGraw Hill, 2003. Course After learning all the units of the course, the str 1.Prepare casting moulds using foundry sand 2.Prepare simple cast components using Aluri 3.Calculate the material requirement for forgit 4.Prepare simple forged components. Course Artice Course Outcomes Course Outcomes Course Sing moulds using foundry sand. CO1 Prepare simple cast components using Aluri Course Outcomes Course Outcomes Course Artice Course Outcomes Course Artice Course Outcomes Outcomes Co1 Prepare casting moulds using foundry sand. CO1 Prepare simple cast components using Aluminium/Cast Iron. Course Artice	SBN For Dutc Ident miniu ng. ulati 1 r	: 97 om is <i>i</i> m/C on 1	8-013 ry Fo es able to Cast In Matri Pro 3 4 3 1 3 3	312 orm o; con. x gra 5 1	m (41. g a	nd	me 9	eld s	ing		2nd	Ed.,

Course Title: Aptitude and Reasoning Development - BEGINNER. (ARDB)									
Course Code: P17HU39	Semester: III		L-T-P-H: 0-0-2-2	Credits: NA					
Contact Period - Lecture: 32H	rs.; Exam:3Hrs.	We	ightage: CIE: 100 %	b; [P/NP]					
Relevance of the course: 3 rd Semester is considered as the right time to build a base to									
student's analytical and logical	al ability. This cou	ırse	connects the basics	of maths learnt in					
school into the present probl	em solving techni	ques	. It creates an awar	reness towards the					
importance and significance of	an individual's log	gical	abilities.						
	Course Co	nter	t						
	UNIT-	Ι							

Sharpen your axe!!

Vedic mathematics:

Viniculum and de- viniculum, subtractions using viniculum .Nikhilum multiplication: For numbers close to base values, multiplication of any two digit numbers or three digits number using criss cross method. Finding the square, square root, cubes , cube root of two digit and three digit numbers quickly. Approximation in multiplication and division. Checking the answer using digital sum method

Self-study Component- Get hands on multiplication tables, increasing the speed in basic arithmetic operations. Classification of numbers.

Percentage calculations and ratio comparison:

Percentage calculations: Percentage rule for calculating , percentage values through additions, percentage– fraction table, approximation in calculating percentages. Application based problems

Ratio comparison: calculations method for ratio compressions: 1. the cross multiplication method, 2. percentage value compression method 3. numerator and denominator percentage change method. Method for calculating the value of percentage change in the ratio. Application based problems.

Self-study Component- Thorough with fractions and decimal values. Applications of tabulated fractions. Product of means and extremes. **8 Hrs**

UNIT-II

Analytical Reasoning 1: series

Number series: Standard patterns of number series, pure series: perfect square, square cube, prime, combination of this series. Difference series, ratio series, mixed series, geometric series, two-tier arithmetic series, three-tier arithmetic series, change in the order for difference series, change in the order for ratio series, sample company questions.

Letter series: Alphabet and Alphanumeric series, finding the missing term based on logic learnt in number series module, continuous pattern series, correspondence series. sample company questions.

Picture series : image analysis, addition deletion rotation or modification of lines or shapes. Understanding the symmetry of the image. Mirror image analysis. sample company questions.

Self-study Component- Basic knowledge of letter positions, Different number series for example – even, odd, prime, composite etc **6 Hrs**

UNIT-III

Number system:

Introduction, **Integers:** Remainder zero concept, Odd and Even Integers, Negative and positive integers, power number a^x, properties of a perfect square number. **Prime number:** General method to identify the prime number, properties of prime numbers. Euler's number. **Factorial number:** Wilson's theorem, important results on factorial. **Divisor:** number of divisors, sum of divisors, number expressed as the product of two factors.

Divisibility rules: divisibility of a whole number by a whole number, divisibility of an expression by an expression. **Modulus concept:** divisibility rules in modulus, rules of

operations in modulus. Finding one remainder: One divisor, remainder of $(a^n -$	<i>b</i> ^{<i>n</i>}),
remainder for more than one divisor.	
Unit digit: Concept of power cycle, finding last two digits. Number of trailing zeroes.	
Self-study Component-Basic arithmetic operations, knowledge about quotient	and
remainders, multiples and factors. 6 Hr	S

UNIT-IV

Simple equations, Ratio Proportions and Variations:

Simple equations: Linear equations-Linear equations in one variable, linear equation in two variables, Different methods of solving linear equations in two variables– Method of elimination, Method of substitution, Method of cross multiplication. Format of equations that can be converted to linear equations, Linear equations of three variables, Inequalities and its properties. Advanced problems on Simple equations. Age problems.

Ratio Proportions and Variations: Understanding the meaning and difference between ratio, proportion and variation. Properties of ratio, Comparison of more than two quantities, Proportion, Properties of proportion - Componendo, Dividendo, Invertendo, Alternendo. Continued proportion, Mean proportion. Variation - Direct variation, Indirect variation, Joint variation, Short cut methods to solve problems on variation.

Self-study Component-Knowledge about factors, types of factors. Splitting the middle term rule, formula rule. 6 Hrs

UNIT-V

Building the fundamentals of logical reasoning: Arrangement:

Approach to tackle questions, Different types of arrangement– Linear arrangement, Circular arrangement. Selection, Double line map. Possible ways of arrangement– Words or numbers, left side only, right side only, left right alternate, increasing or decreasing order, interchange vs push, Strategy for solutions– some tips for quick answers, general strategy.

Directions :

Basics. Pythagorean theorem, Pythagorean triplets, Solving problems for practice.

Blood relations :

Some typical relations that we come across, family tree, Structuring the given problem step by step. Suggested methods– Backtracking, drawing family tree. Problems on blood relations and professions.

Self-studyComponent-Basicknowledgeofdirections,Pythagorastheorem.Logicalreasoning skills, Relations, Family tree.6 Hrs

Reference Books

- 1. The Trachtenberg speed system of basic mathematics, published by Rupa publications.
- 2. CAT Mathematics by AbhijithGuha. published by PHI learning private limited.
- 3. Quantitative aptitude by Dr. R. S Agarwal, published by S.Chand private limited.
- 4. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.
- 5. Quantitative aptitude for CAT by Arun Sharma, published by McGraw Hill publication.
- 6. Analytical reasoning by M.K Pandey BSC PUBLISHING.CO.PVT.LTD

Course Outcomes

After learning all the units of the course, the student is able to;

- 1. Solve mathematical calculations in less duration compared to the conventional method. L2
- 2. Give examples for AP, GP and HP and differentiate between them. L1
- 3. Apply divisibility rules , power cycle method and evaluate the significance of the number system module. L2
- 4. Point out the errors in the problems concerning inequalities and solve simple equations and problems based on ratio, proportion and variation. L5
- 5. Solve the problems based on blood relations, directions and arrangement. L4

Course Title: Additional Mathematics-I
(Mandatory Learning Course: Common to All Branches)
(A Bridge course for Diploma qualified students of III Sem. B. E.)
Course Code: P17MADIP31 Semester: III L-T-P-H: 4-0-0-4 Credits: NA
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Content
UNIT-I
Complex Trigonometry: Complex Numbers: Definitions & properties. Modulus and
amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).
Roots of complex number - Simple problems.
Vector Algebra: Scalar and vectors. Vectors addition and subtraction. Multiplication of
vectors(Dot and Cross products). Scalar and vector triple products-simple problems. 12Hrs
UNIT-II
Differential Calculus : Review of successive differentiation. Formulae for n th derivatives of
standard functions- Liebnitz's theorem(without proof). Polar curves -angle between the
radius vector and the tangent pedal equation- Problems. Maclaurin's series expansions-
Illustrative examples. Partial Differentiation : Euler's theorem for homogeneous functions of
two variables. Total derivatives-differentiation of composite and implicit function.
Application to Jacobians, errors & approximations.10 Hrs
UNIT-III
Integral Calculus : Statement of reduction formulae for $sin^n x$, $cos^n x$, and $sin^m x cos^m x$ and
evaluation of these with standard limits-Examples. Differentiation under integral
sign(Integrals with constants limits)-Simple problems. Applications of integration to area,
length of a given curve, volume and surface area of solids of revolution. 10 Hrs
UNIT-IV
Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a
particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence,
Curl and Laplacian (Definitions only). Solenoidal and irrotational vector fields-Problems.
10 Hrs
UNIT-V
Ordinary differential equations (ODE's): Introduction-solutions of first order and first
degree differential equations: homogeneous, exact, linear differential equations of order one
and equations reducible to above types. Applications of first order and first degree ODE's -
Orthogonal trajectories of cartesian and polar curves. Newton's law of cooling, R-L circuits-
Simple illustrative examples from engineering field. 10 Hrs
Text Books
1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 42 nd Ed.
2012.
Reference Books
1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 6th Ed., 2007.
2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.

Semester:- IV
Course Title: Engineering Mathematics-IV(Common to AU, CV, ME and IP& E Branches)
Course Code: P17MAAC41Semester: IVL-T-P-H: 3-2-0-5Credits: 04
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Relevance of the Course:
Engineering Mathematics-IV deals with Complex analysis. Here we understand the basics
complex variable, analyticity and potential fields through complex potential and conform
transformations interpret the solution in fluid flow and electromagnetic problems.
The process of complex integration and series representation of functions of complex variables field theory and other Engineering applications.
Solving algebraic, transcendental and ordinary differential equations arising in varie
engineering flow and design data problems.
In Statistics interpretation and analyzing the data, fitting of curves of best fit for experimen
data arising in engineering calculations and analyze the same by expressing in the form
regression lines.
Probability distributions and use them in analyzing and solving engineering problems associat
with probability models
Variational problems used in structural engineering, aerospace, ground water flows a
environmental fluid dynamics, etc Understand series solution of ODE's and special functions in engineering fields.
Course Content
UNIT-I
continuity and differentiability. Analytic functions. Cauchy–Riemann equations in Cartesian and polar forms problems on properties of analytic functions (No proof). Construction of analytic function: Milne-Thomson method. Conformal transformation–Definitions. Discussion of transformations: $w=z^2$, $w=e^z$, $w=z+\frac{1}{z}(z \neq 0)$ Bilinear transformations. Complex integration: complex line integrals. Cauchy theorem, Cauchy integral formula.
Taylor's and Laurent's series (Statements only). Singularities, poles and residues. Cauchy residue theorem (statement only). Simple illustrative examples.
Self-Study Component: Derivation of Cauchy- Riemann equation in Cartesian and polar
form. Derivation of Cauchy theorem, Cauchy integral formula and Cauchy's residue theorem.
11 Hrs
UNIT-II
Numerical Methods-II: Solution of algebraic and transcendental equations: Bisection
method, Regula-False & Newton–Raphson method. Fixed point iteration method:
Aitken's Δ^2 - process - Illustrative examples only.
Numerical solution of ordinary differential equations (ODE's): Numerical solutions
of ODE's of first order first degree – Introduction. Taylor's series method. Modified
Euler's method, Runge - Kutta method of IV order, Milne's and Adams predictor &
corrector methods (All formulae without proof). Self-Study Component: Solution of second order ordinary differential equations using
Runge-Kutta methods. Solution of first order simultaneous differential equations. 10 Hrs
UNIT-III
Statistics: Brief review of measures of central tendency and dispersion. Moments, skewness
and kurtosis. Curve fitting-least square
method: $y = a + bx$; $y = ax^{b}$, $y = ab^{x}$ and $y = ax^{2} + bx + c$. Prof. Karl Pearson's
coefficient of correlation and lines of regression.
Probability Theory: Brief review of elementary probability theory. Random variables

(discrete and continuous)-Introduction to probability distributions- probability mass/density

functions and cumulative probability density functions – Illustrative examples. Discrete probability distributions- Binomial and Poisson's distributions; Continuous probability distributions - exponential and normal distributions. (No derivation of mean and variance). Illustrative examples from engineering and industrial fields.

Self-Study Component: Basic definitions of probability and problems up to Bayes' theorem. To fit curves of the type $: y = ae^{bx}$, Derivation of Mean and SD of Binomial & Poisson distribution. **11 Hrs**

UNIT-IV

Joint probability distributions and Markov chains:Concept of joint probability. Joint probability distributions of discrete random variables. Expectation, covariance, correlation coefficient – simple examples. Probability vectors, stochastic matrices. Fixed point and regular stochastic matrices.

Linear Algebra-II: Numerical methods for system of linear equations- Gauss-Jacobi and Gauss- Seidel iterative methods. Relaxation method. Determination of largest eigen value and corresponding eigen vector by power method.

Self-Study Component: Ramanujan's Method to find the smallest root of a polynomial.

UNIT-V

10 Hrs

Calculus of Variations: Variation of a function and a functional, extremal of a functional. Variational problems – Euler's equation. Applications to standard variational problems including geodesics, minimal surface of revolution, hanging chain and brachistochrone problems.

Series solutions of ODE's and special functions: Power series solution of a second order ODE, Series solution-Frobenius method. Series solution leading to $J_n(x)$ -Bessel's function of

first kind. Expansions for $J_{\frac{1}{2}}(x)$ and $J_{-\frac{1}{2}}(x)$. -simple related examples. Series solutions of

Legendre's differential equation leading to $P_n(x)$ -Legendre's polynomials. Rodrigue's formula (No Proof) - simple illustrative examples.

Self-Study Component: Basics of Series solutions of ODE's; <u>analytic</u>, singular point and basic recurrence relations 10 Hrs

Text Books

1. Higher Engineering Mathematics: B.S. Grewal, Khanna Publishers, New Delhi, 42nd Ed. 2012.

2.Advanced Engineering Mathematics: - E. Kreyszig, John Wiley & Sons, 10th Ed., 2011

Reference Books

1.Probability: - Seymour Lipschutz, Schaum's outline series, McGraw-Hill publications, 2nd Edition, 2002.

2.Introductory Methods of Numerical Analysis: - S.S.Sastry, PHI, 3rd Ed.2000.

3.Advanced Modern Engineering Mathematics: - Glyn James, Pearson Education Ltd., 3rd Edition, 2011.

4.Higher Engineering Mathematics: - B.V. RAMANA, McGraw Hill Education, 2007

Note: - Each unit contains *two* full questions of *20 marks* each. Students are required to Answer *five* full questions choosing at least *one* question from each unit.

Course Outcomes

After learning all the units of the course, the student is able to;

1. Explain the concept of analyticity and potential fields through complex functional/potential, conformal transformations and interpret the solution in fluid flow and electromagnetic problems and describe the process of complex integration and learn series representation of a function of complex variables, residues and poles.

- 2. Apply the familiarity of numerical methods for solving algebraic and transcendental equations and demonstrate single-step and multi-step numerical methods for solving ordinary differential equations and interpret the solution in engineering applications.
- 3. Apply the knowledge of statistics in interpretation the data, fitting of a linear and nonlinear curves of best fit for experimental data arising in engineering calculations and analyze the same by expressing in the form of regression lines. And, Illustrate the concept of random variables (discrete/continuous) and related probability distributions and use them in analyzing and solving engineering problems associated with probability models
- 4. Define the concept of joint probability of two random variables and apply the knowledge of joint probability distribution in interpreting data through statistical measure. And, analyze the notion of higher transition probabilities, the Markov chain and queuing models arising in engineering problems for feasible random events.

Understand the procedure of numerically solving large systems of linear algebraic equations and obtaining eigen value and eigen vector corresponding to a large eigen vector, with the aid of standard methods of numerical linear algebra.

5. Explain functional and extremal of functional Euler's equation and applications of calculus of variations to the standard variational problems and basic concepts of reliability theory including failure laws required in the analysis of engineering experiments occurring in engineering fields.

	Course Articulation Matrix														
		Program Outcomes													
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	
CO1	2	3													
CO2	2	2													
CO3	2	3													
CO4	3	3													
CO5	3	3													

Obtain series solution of essential ODE's such as Bessel's and Legendre's differential equations and understand their scientific/engineering utility

Cour	se Title: Applied	Гhe	rmodynamics	
Course Code: P17ME42	Semester: IV	i ne	L-T-P-H: 4-0-0-4	Credits: 04
Contact Period - Lecture: 52Ht		W	eightage: CIE: 50 %;	
Course Objectives: Applied the			* *	
Thermodynamics with emphasis				
application of basic principles to	-	-		-
refrigeration and I C engines.	beingmeering probl	ems	s with systems myory	ing compressors,
remgeration and r c engines.	Course Co	nto		
	UNIT-		11	
AIR STANDARD CYCLES:			cle and Diesel Cycle	their P-V and T-S
diagrams, description, expression	-	-	-	
Comparison of Otto and Di				
Deviations of practical gas tur				
Regeneration, reheating and In		Cui	cycles. Variations of	11 Hrs
Self study component: Duel cy	U	aor	ams description	
Sen Study component. Edit Cy				
VAPOUR POWER CYCLE			ver cycle and its ne	erformance. Simple
Rankine cycle, description, T-S	-	-	•	-
pressure, exhaust pressure and				
cycle. Deviation of simple Rar	1		1	1
regenerative cycle, practical reg				
	2		1 71	11 Hrs
Self study component: Compar	rison of Carnot and	Ra	nkine cycles.	
	UNIT-I	Π		
RECIPROCATING AIR CO	MPRESSORS:	Wor	king of single stag	e reciprocating air
compressors, Work input using	PV diagram and s	teac	ly flow analysis. Effe	ect of clearance and
volumetric efficiency, isother		cal	efficiencies, Expres	
intermediate pressure. Imperfec	0			10 Hrs
Self study component: Multist			ntages of multistage of	compression.
	UNIT-I			
REFRIGERATION: Introduce				
diagram and Pressure- entha				-
systems, sub-cooling and supe				
capacity, power required and	1		1	1 V
Refrigerants for vapor comp	•		0	0
absorption refrigeration, COP	-	rige	eration system.	10 Hrs
Self study component: Propert		K 7		
TESTING OF LC ENCINE	UNIT- S. Tosting of two		to and four strates	SI and CI anaines
TESTING OF I.C. ENGINE	-			-
Performance Factors, Basic te Indicated Power, Friction Power	-			
Power: Fuel consumption: vol				-
air consumption. Heat balance	• •		-	10 Hrs
Self study component: princip			-	
dynamometers.		, III	containear, myaraane	and eddy editent
Text Books				
1. P .K. Nag "Basic and App	ied Thermodynar	nice	" Tata McGraw Hill	2nd Edition 2000
ISBN: 9780070151314.	icu inciniouynai	mus		, 2110 Latuoli 2009,
2 R K Rainut "Engineering	Thermodynamic	," I	armi Publications	1 th Edition ISBN:

2. R K Rajput "**Engineering Thermodynamics**" Laxmi Publications, 4th Edition, ISBN: 9788131800584.

<u>Dep</u>	artment of Mechanical Engineering														
3. V	Ganesan "Internal Combustion Engines"	Tat	ta N	Ac(Gra	w]	Hill	, 4	th e	diti	on,	20)12,	ISB	8N :
	781259006197														
4. M	Iahesh M Rathore "Thermal Engineering" T	Tata	ιM	cG	raw	' Hi	ill,	1^{st}	edi	itio	n,				
IS	SBN: 9780070681132														
Refer	rence Books														
	B Spalding and E H Cole " Engineering SBN : 9780713132991.	Tł	ner	mo	dyı	nan	nics	5".	Arı	nolo	1 1	973	3, 3	edit	ion,
	unus A. Çengel, Michael A. Boles "Ther	mo	dv	nar	nic	s –	- A	n e	eng	ine	eri	ng	api	oroa	ch"
	ata McGraw Hill, 6 th edition, 2007, ISBN :							-	8	_	-	9		L	-
	ordon J. Van Wylen "Fundamentals of							ody	na	mic	:s"	Jol	nn V	Wile	y &
Se	ons Canada, Limited, 3 rd edition, 1988, ISBN	N : 1	978	304	716	510	762	2							-
6. S	Domkundwar, C P Kothandaraman and	łV	/ Ι	Don	nku	ndv	war		A	cou	irse	e i	nТ	Ther	mal
	ngineering", Dhanpat Rai & Co, 2004, ISB														
	I.L.Mathur and R.P.Sharma "Internal Con	ıbu	sti	on i	En	gin	es"	, D	har	npa	t Ra	ai 8	& C	0, 20	010,
IS	SBN: 9788189928469.														
	Course Or														
	learning all the units of the course, the stud														
	xplain the concept of air standard cycle and														
	xplain and calculate the performance chara														
	xplain the different types of refrigerating	g sy	/ste	ms	an	d A	4pj	ply	the	e k	nov	vle	dge	of	P-H
	nart.	τC													
4. U	alculate the performance characteristics of Course Articul														
	Course Articu	้อม	on					<u></u>	t a a					D	50
	Course Outcomes		1	I	TO	gra		Ou			:5			P	
		1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Explain the concept of air standard	2	2		2									_	-
001	cycle and vapor power cycle	-			-										
	Explain and calculate the performance					_									
CO2		2	2		2	2								-	-
	compressor.														
~~~	<b>Explain</b> the different types of														
	refrigerating systems and and Apply the	2	2		2	2								-	-
CO3															
CO3	knowledge of P-H chart.														
CO3	knowledge of P-H chart. <b>Calculate</b> the performance characteristics of I.C. Engines	2	2		3	2								-	-

Course Title: Mechan			
Course Code: P17ME43 Semester		L-T-P-H: 4-0-0-4	Credits: 04
Contact Period - Lecture: 52Hrs. Exam: 3		ightage: CIE: 50 %	
Course Objectives: The course aims	-		
concepts of Measurement and Metro	0.	0 0	U
advancements in system of Limits, Fits	Tolerances	and Gauging of m	echanical elements
which are commonly used in industries.			
Co	urse Conten	t	
Basic Concepts of Measurement a measurement, Generalized measurement			-
instruments (Only static characteristics objectives of metrology. Standards, Subd standard yard, Wave length standard, Inte standard. Calibration of end bars, Slip ga building of slip gauges.	vision of sta rnational Pro	ndards, Line and encototype meter, Trans	l standard, Imperial fer from line to end
Self study component: Signal Types, Mo	les of operat	ion.	
	UNIT-II		
System of Limits, Fits, Tolerances and assembly, Principle of inter changeabilit and tolerances, Compound tolerances, ac fits. Hole basis system and shaft basis sys Classification of gauges, Basic concep allowance on gauges. Types of gauges materials. Gauge Design and numerical p	y and selecti cumulation of tem, Geomet of design -plain plug	ve assembly. Conce of tolerances. Definit tric dimensioning and of gauges (Taylor's	pt of limits of size ion of fits, types of d tolerancing. s principles), wear
Self study component: Limit gauges for t	apers.		
	UNIT-III		
<b>Comparators</b> : Characteristics and class Johnson Mikrokator, Sigma Comparat optimeter, Electric and Electronic Cor Comparator. Back Pressure gauges, <b>Ang</b> Sine center.	ors, Optical parators, L	Comparators -prin VDT, Pneumatic C	ciples, Zeiss ultra comparators, Solex
Surface roughness and Metrology of	Screw Th	read: Surface rough	hness terminology,
Methods of measuring surface roughness	Taylor-Hob	son talysurf, Analys	is of surface traces,
Measurement of basic elements of thread	worked exa	mples. Measurement	of major diameter,
minor diameter, pitch, angles and effect	ve diameter	of screw threads by	2-wire and 3-wire
methods, Best size wire.			12 Hrs
Self study component: Errors in threads,	Angle gauge	S.	
	UNIT-IV		
Transducers: Introduction, Transfer et		ading effect. Prime	arv and Secondary
transducers, classification of transduc			
transducers.	<b>T</b> 1 •		
Signal Conditioning: Mechanical system circuitry-simple current sensitive circuit			
telemetry.			
<b>Terminiting devices:</b> Cathode Ray Oscil	loscope, Osc	illographs, X-Y Plot	ters. <b>10 Hrs</b>

Terminiting devices: Cathode Ray Oscilloscope, Oscillographs, X-Y Plotters.10 HrsSelf study component: Toolmakers microscope, Profile projector

<u> </u>															
~	UNIT-V				_					_					_
	in Measurement: Methods of strain measure	em	ent	, :	Stra	in	ga	ug	es,	P	rep	oara	ation	1 a	nd
	nting of strain gauges, Gauge factor.														
	surement of Force: Introduction, Proving ring														
	surement of Torque: Introduction, Hydraulic dy														
	surement of Pressure: Introduction, Use of e	las	tic	m	em	bei	rs,	Br	idg	gen	nan	g	auge	e, I	Мc
Leod	l gauge, Pirani Gauge														
Tem	perature Measurement: Resistance thermometer	ers	, Tl	her	mo	CO	upl	e,	La	ws	of				
therr	nocouple, Thermocouple materials.												1	0 H	Irs
Self s	tudy component: Pyrometers, Optical pyromete	ers.													
	Books														
1.R	.K.Jain "Engineering Metrology" Khanna Pub	lisł	ner	s, I	Del	hi,	20	th	edi	tio	n, 1	200	)4, I	SB	N:
	788174091536.														
2.R	.S.Sirohi and H.C.RadhaKrishna "Mechanical M	Me	ası	ire	me	ents	s" ]	Ne	w.	Ag	e I	nte	rnat	ion	al,
R	evised 3 rd edition, 2013, ISBN: 9788122403831.									U					í
	cence Books														
1.T	homas G. Beckwith, Roy D. Marangoni	&	J	ohı	n	H.	Ι	ier	iha	rd	"	M	echa	ni	cal
	<b>leasurements</b> " Pearson Prentice Hall, 6 th edition													•	
	C.Gupta <b>"Engineering Metrology</b> " Dhanpat Ra													SB	N
	788189928452.						·, ·				,		_, _	~ _	
	lsutko & Jerry Faulk "Industrial Instrument:	ati	nn'	, г	)elı	na	r c	en	<b>5</b> 90	re 1	lea	rni	nσ	190	96
	SBN: 9780827361256			-		IIu		<b>U</b> 112	546	,• .	iou		-8,		, 0,
	oblin <b>"Measurement Systems"</b> Tata McG	rav	<b>X</b> 7	Hi	11	$6^{t}$	h	edi	itio	n	20	012	, т	SB	N٠
	780070699687.	14	v	111	11,	0		cui	in o	11,	2	012	-, I	50	11.
	<u>Course Outcon</u>	200													
Aftor	learning all the units of the course, the student is			tor											
	<b>xplain</b> measurement, metrology, various stand				ma	0.01	1201	ma	nto	-01	h	ماه	mai	nte	$\mathbf{of}$
	easurement systems.	aru	15 (	Л	me	ası	II CI	ne	ms	a	IU	CIC	/IIICI	115	01
	alculate tolerances and design plug and ring gau		a.												
	<b>xplain</b> different types of comparators, angle me	<u> </u>		20	da	in	•	0.00	4.4	low		0.17	nro		na
	or finding effective diameter of screw threads.	cas	um	Ig	ue	VIC	es	and	ı u	eri	ive	ex	pres	ssic	ms
		m	l to		inc	tin	<b>a</b> (	lor	ia			ha		aiat	ad
	<b>xplain</b> sensor transducers, signal conditioning a	anc	i te		IIIa	um	g	lev	ice	25	wit	пä	18800		leu
-	arameters.							c							
	xplain basic principles and devices involved in	me	ası	ırır	ng s	stra	un,	IC	orce	e, to	orc	lue	, pre	essi	ire
ar	nd temperature.			•											
	Course Articulation		lat											DO	0
	<b>Course Outcomes</b>	-		r	rog	,						4.4	10	PS	
		1	2	3	4	5	6	7	8	9	10	11	12	01	02
	Explain measurement, metrology, various														
CO1	standards of measurements and elements of	1	2		2									-	1
	measurement systems.														
$\mathbf{c}$	Calculate tolerances and design plug and ring	2	1												1
CO2	guages	2	1											-	1
	<b>Explain</b> different types of comparators, angle														
CO3		1	2		1									-	1
	finding effective diameter of screw threads.		_												-
	<b>Explain</b> sensor transducers, signal	$\vdash$													
<b>CO4</b>	conditioning and terminating devices with	1	1		2										1
	associated parameters.		1		4									-	1
	<b>Explain</b> basic principles and devices involved	$\vdash$													
COF		1	2		3										1
CO5	in measuring strain, force, torque, pressure and temperature.	1	2		3									-	1
		1	1	1					1						

Course Code: P17ME44       Semester: IV       L-T-P-H: 3-2-0-5       Credits: 04         Contract Period - Lecture: 52Hrs. Exam: 3Hrs.       Weightage: CIE: 50%;       SEE: 50%;         Course Objectives: The course aims at enabling the students to understand the basic concepts of stress, strain and deformation of mechanical elements subjected to axial, bending and torsional loading.         Course Content         UNIT-1         Stress, strain stress, stress, start of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants.       10 Hrs         Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load         UNIT-II         Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in x direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain.         UNIT-II         Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain.	Course Title: Mechanics of Materials
Contact Period - Lecture: 52Hrs. Exam: 3Hrs.       Weightage: CIE: 50%; SEE: 50%         Course Objectives: The course aims at enabling the students to understand the basic concepts of stress, strain and deformation of mechanical elements subjected to axial, bending and torsional loading.         Course Content       UNIT-1         Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hookc's law, modulus of tasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants.       10 Hrs         Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load       10 Hrs         Self study component: Strain on inclined plane due to (i) normal stress in uniform and compound bars. Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram.       10 Hrs         Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in x direction (iii) normal stress in x direction (iii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain.         UNIT-1I         Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for di	
concepts of stress, strain and deformation of mechanical elements subjected to axial, bending and torsional loading. Course Content UNIT-I Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. 10 Hrs Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load UNIT-II Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars: Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. 10 Hrs Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. 10 Hrs Self study component: Strain on inclined plane due to, (in) mormal stress in x direction (iii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. 10 Hrs Self study component: Shear force and Bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 10 Hrs Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of uniform section. Shearing st	Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 50%
Course Content           UNIT-1           Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, poor stress, factor of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. 10 Hrs           Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load           UNIT-II           Compound bars: Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. 10 Hrs           Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain.           UNIT-II           Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment diagram force and bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram           UNIT-IV           Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending moment diagrams due to inclined loads; Loading and Shear s	Course Objectives: The course aims at enabling the students to understand the basic
Course Content UNIT-I           Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. 10 Hrs Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load UNIT-II           Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars. Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. 10 Hrs           Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. UNIT-III           Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 20 UNIT-IV           Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of uniform section. Shearing stresses in beams, shear stress across rectangu	
UNIT-I Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. 10 Hrs Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load UNIT-II Compound bars. Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. 10 Hrs Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. UNIT-III Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and UNIT-IV Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending moment diagram UUT-IV Bending and shear stresses in Beams: Theory of simple bending, susumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment aradius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Isenting thression for stresses with point load and UDL 12 Hrs Self study component: Beam of constant withpoint load and UDL 12 Hrs Self study comp	
Simple stresses and strains: Stress, types, Saint Venant's principle, stress-strain curve for mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of clasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. <b>10 Hrs</b> Self study component: Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load <b>UNIT-II</b> Compound bars: Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. <b>10 Hrs</b> Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. <b>UNIT-III</b> Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. <b>10 Hrs</b> Self study component: Shear force and Bending moment diagram from shear force diagram <b>10 kirs</b> steed strusses in stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending stresses across rectangular, circular, I and T sections. Schearing stresses in beams with point load and UDL. <b>12 Hrs</b> Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant equation of deflection, Flexural Trigidity, Macaulay's method for simply supported beams with point load and UDL. <b>12 Hrs</b> Self study	
mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of clasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. <b>10 Hrs Self study component:</b> Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load <b>UNIT-II</b> Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars: Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. <b>10 Hrs</b> Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. <b>10 UNIT-III</b> Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. <b>10 Hrs</b> Self study component: Shear force and Bending moment diagram from shear force diagram <b>10 unit</b> , founding and Bending moment of resistance of a section. Bending stresses in beams is theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, moment of resistance of a section. Bending stresses in beams is shear stress across rectangular, circular, I and T section. Shearing stresses in beams shear stress across rectangular, circular strength (Modulus of rupture), Flexural Modulus, relationship between bending the publems). <b>Deflection of Beams</b> : Introduction, Differential equation deflection; Flex	
Compound bars: Stress analysis of composite bars. Thermal stresses in uniform and compound bars. Compound stresses: Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. 10 Hrs Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. UNIT-III Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 10 Hrs Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram UNIT-IV Bending and shear stresses in Beams: Theory of simple bending, sumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation of colidaries formula.	mild steel, working stress, proof stress, factor of safety, Hooke's law, modulus of elasticity, strain energy, proof resilience, longitudinal strain, lateral strain, poison ratio, stress strain analysis of bars of uniform cross section, stepped bars, bars with continuously varying section, principle of superposition. Modulus of rigidity, volumetric strain, expression for volumetric strain, bulk modulus, relation among elastic constants. <b>10 Hrs</b> <b>Self study component:</b> Strain energy due to gradually applied normal load; Strain energy due to gradually applied shear load
compound bars. <b>Compound stresses</b> : Principal planes and stresses, plane of maximum shear stress in general 2D system. Mohr's circle diagram. <b>10 Hrs</b> <b>Self study component:</b> Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. <b>UNIT-III</b> <b>Shear force and Bending Moment:</b> Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. <b>10 Hrs</b> <b>Self study component:</b> Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram <b>UNIT-IV</b> <b>Bending and shear stresses in Beams:</b> Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). <b>Deflection of Beams:</b> Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL <b>12 Hrs</b> <b>Self study component</b> : Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. <b>UNIT-V</b> <b>Torsional stresses:</b> Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. <b>Columns:</b> Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and	
stress in general 2D system. Mohr's circle diagram. 10 Hrs Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. UNIT-III Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 10 Hrs Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram UNIT-IV Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. Frames: Types of frames	
<ul> <li>Self study component: Strain on inclined plane due to (i) normal stress in x direction (ii) normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain.</li> <li>UNIT-III</li> <li>Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load.</li> <li>10 Hrs</li> <li>Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram</li> <li>UNIT-IV</li> <li>Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems).</li> <li>Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs</li> <li>Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width.</li> <li>UNIT-V</li> <li>Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts.</li> <li>Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limi</li></ul>	
normal stress in y direction (iii) shear stress in x-y direction; Mohr's circle for strain, Principal strain. UNIT-III Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 10 Hrs Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram UNIT-IV Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. Frames: Types of frames, Analysis of simply supported perfect frames using method of	
VINT-III         Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load.         10 Hrs         Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram         UNIT-IV         Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems).         Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL.         UNIT-V         Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts.         Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation of columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula.	
UNIT-III Shear force and Bending Moment: Types of beams, loads and supports. SF and BM, sign conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. 10 Hrs Self study component: Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram UNIT-IV Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. Frames: Types of frames, Analysis of simply supported perfect frames using method of	
conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. <b>10 Hrs</b> <b>Self study component:</b> Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram <b>UNIT-IV</b> <b>Bending and shear stresses in Beams:</b> Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). <b>Deflection of Beams:</b> Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. <b>12 Hrs</b> <b>Self study component:</b> Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. <b>UNIT-V</b> <b>Torsional stresses:</b> Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. <b>Columns:</b> Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. <b>Frames:</b> Types of frames, Analysis of simply supported perfect frames using method of	
<ul> <li>Bending and shear stresses in Beams: Theory of simple bending, assumptions in simple bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems).</li> <li>Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs</li> <li>Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width.</li> <li>UNIT-V</li> <li>Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts.</li> <li>Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula.</li> <li>Frames: Types of frames, Analysis of simply supported perfect frames using method of</li> </ul>	conventions, relationship between load intensity, shear force and bending moment. SFD and BMD for different beams subjected to concentrated loads, Uniformly Distributed Load and Uniformly Varying Load. <b>10 Hrs</b> <b>Self study component:</b> Shear force and Bending moment diagrams due to inclined loads; Loading and Bending moment diagram from shear force diagram
bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and T sections. (Moment of Inertia to be provided for numerical problems). Deflection of Beams: Introduction, Differential equation of deflection; Flexural rigidity, Macaulay's method for simply supported beams with point load and UDL. 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. Frames: Types of frames, Analysis of simply supported perfect frames using method of	
Macaulay's method for simply supported beams with point load and UDL. 12 Hrs Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width. UNIT-V Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. Frames: Types of frames, Analysis of simply supported perfect frames using method of	bending, relationship between bending stresses and radius of curvature, Flexural strength (Modulus of rupture), Flexural Modulus, relationship between bending moment and radius of curvature, section modulus, moment of resistance of a section. Bending stresses in beams of uniform section. Shearing stresses in beams, shear stress across rectangular, circular, I and
<ul> <li>Self study component: Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width.</li> <li>UNIT-V</li> <li>Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts.</li> <li>Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula.</li> <li>Frames: Types of frames, Analysis of simply supported perfect frames using method of</li> </ul>	1 0 1
<ul> <li>Torsional stresses: Introduction to torsion, pure torsion, assumptions, derivation of torsion equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts.</li> <li>Columns: Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula.</li> <li>Frames: Types of frames, Analysis of simply supported perfect frames using method of</li> </ul>	<b>Self study component:</b> Beam of uniform strength – uniform beam of rectangular section replaced by (i) Beam of constant depth (ii) Beam of constant width.
equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow circular shafts. <b>Columns:</b> Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. <b>Frames:</b> Types of frames, Analysis of simply supported perfect frames using method of	
<b>Columns:</b> Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free, Limitations of Euler's theory, Rankine's formula. <b>Frames:</b> Types of frames, Analysis of simply supported perfect frames using method of	equation, polar modulus, torsional rigidity, and torque transmitted by solid and hallow
Frames: Types of frames, Analysis of simply supported perfect frames using method of	<b>Columns:</b> Introduction to Columns, Euler theory for axially loaded elastic long columns, Euler equation for columns with (i) both ends hinged (ii) one end fixed and other end free,
joints and method of sections subjected to horizontal and vertical loads only. <b>10 Hrs</b>	Frames: Types of frames, Analysis of simply supported perfect frames using method of

**Self study component:** Shafts in series and parallel; Torsional stresses in stepped shafts, concentric shafts.

## **Text Books**

- 1.S. S. Bhavikatti "**Strength of Materials**" Vikas Publication House-Pvt Ltd 2nd edition, 2000, ISBN: 8125901647
- 2.S.S. Rattan "Strength of Materials" Tata McGraw-Hill, New Delhi, 2nd Edition, 2011, ISBN: 9780071072564
- 3.Dr. R. K. Bansal "Strength of Materials" Laxmi Publication, New Delhi, 5th Edition, 2007, ISBN: 9788131808146

## **Reference Books**

- 1.W.A. Nash "Strength of Materials "Schaum's Outline Series, 4th Edition, 2007, ISBN: 9780070466173
- 2.Ferdinand P Beer, E Russell Johnston, JR., John T DeWolf adapted by N Shivaprasad & S Krishnamurthy "**Mechanics of Materials**" Tata McGraw-Hill
- 3.James M. Gere, Stephen P. Timoshenko, "Mechanics of Materials" CBS Publishers and Distributers Delhi.
- 4.Dr. B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain, "Mechanics of Materials" Laxmi Publications, New Delhi. 2002

## **Course Outcomes**

After learning all the units of the course, the student is able to;

- 1.**Classify** different types of stresses, strain and deformations induced in the mechanical components due to external loads.
- 2.Estimate thermal stresses; calculate principal stresses in simple 2D elements.
- 3.**Draw** Shear Force Diagrams and Bending Moment Diagrams for uniform beams for different types of loads and support conditions.
- 4. Compute and analyze bending and shear stresses and deflections induced in beams.
- 5.Estimate torsional stresses in circular shafts; Analyze columns under buckling load; Analyze perfect frames under loads.

	Course Articul	ati	on	Ma	ıtri	X									
				P	Pro	gra	m	Ou	tco	me	es			PS	50
	<b>Course Outcomes</b>	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	<b>Classify</b> different types of stresses, strain and deformations induced in the mechanical components due to external loads.	2	1											-	-
CO2	<b>Estimate</b> thermal stresses; <b>calculate</b> principal stresses in simple 2D elements.	2	2											-	-
CO3	<b>Draw</b> Shear Force Diagrams and Bending Moment Diagrams for uniform beams for different types of loads and support conditions.	2	2											-	-
CO4	<b>Compute</b> and <b>analyze</b> bending and shear stresses and deflections induced in beams.	2	2											-	-
	<b>Estimate</b> torsional stresses in circular shafts; <b>Analyze</b> columns under buckling load and <b>analyze</b> perfect frames.		2											1	1

Course Title: Kinematics of Machinery											
Course Code: P17ME45	Semester: IV		L-T-P-H: 4-0-0-4	Credits: 04							
Contact Period - Lecture: 52H	rs. Exam: 3Hrs.	We	eightage: CIE: 50 %;	SEE: 50%							
Course Objectives: The course	se aims at exposing	stud	lents to the working p	principles of simple							
planar mechanisms and enabli	ng them to understa	and t	the basic concepts of	kinematic analysis							
of simple planar mechanisms.											
	Course Co	nten	nt								
	UNIT.	I									

**Introduction to Mechanisms:** Introduction, Rigid and Resistant bodies, kinematic pairs, degrees of freedom, Grubler's criterion, Kinematic chain, mechanism, machine and structure. Mobility of Mechanisms, Inversions of mechanisms: Four bar chain, Single slider crank chain and Double slider crank chain.

Simple Mechanisms: Quick return motion mechanisms-Whitworth mechanisms, Crank and slotted lever mechanisms. Intermittent motion mechanisms- Geneva mechanism, Ratchet and pawl mechanism. Peaucelliar's Straight line mechanism, Toggle mechanism, Pantograph, Ackerman steering mechanism, Davis steering gear mechanism. 10 Hrs

Self study component: Working principle and application of Universal joint (Hook joint).

## UNIT-II

**Velocity analysis of mechanisms:** Introduction, vectors, addition and subtraction of vectors, absolute and relative motions, motion of a link, velocity analysis of a link by relative velocity method, velocity analysis of four-bar mechanism, slider-crank mechanism and crank and slotted lever mechanism by relative velocity method. Instantaneous centre, number of I-centres, Kennedy's theorem, locating I-centres, velocity analysis of four bar and slider crank mechanisms by I-centre method.

Acceleration analysis of mechanisms: Radial and tangential components of acceleration, Angular acceleration, Acceleration analysis of a link by relative acceleration method, Acceleration analysis of four bar mechanisms and slider-crank mechanisms by relative acceleration method. 12 Hrs

Self study component: Coriolis Component of Acceleration.

## UNIT-III

Gears: Classification & application of different types of gears, Spur Gear terminology, law of gearing, gear tooth profiles, Path of contact, Arc of contact, Contact ratio, Interference in involute gears and under cutting. Methods of avoiding interference and Back lash. Numerical problems. 10 Hrs

Self study component: Application and limitations of different types of gears.

## UNIT-IV

**Gear trains:** Simple gear trains, Compound gear trains, Reverted gear trains, Epicyclic gear trains, Tabular method of finding velocity ratio of epicyclic gear trains. Estimation of Tooth load and torque in epicyclic gear trains.

Belt drive: Introduction, classification, (derivation of length of belt not included) velocity ratio, effect of slip, ratio of belt tensions, effect of centrifugal tension, power transmitted, effect of initial belt tension. V-belts – ratio of belt tensions, power transmitted. Numerical problems. 10 Hrs

**Self study component:** Working principle of Automobile differential gear. Comparison of chain drive, belt drive and rope drive.

## UNIT-V

**Cams:** Types of cams, types of followers, Types of follower motion - SHM, Uniform velocity, uniform acceleration and retardation and Cycloidal motion. Displacement, Velocity and acceleration of follower for different types of motion; Displacement diagram for follower

motion, Construction of cam profiles - Disc cam with reciprocating follower having knifeedge, roller and flat –faced follower. **10 Hrs** 

**Self study component:** Applications of different types of cams.

## Text Books

- 1.S.S. Rattan **"Theory of Machines"** Tata McGraw-Hill, New Delhi, 4th edition, 2015, ISBN: 9789351343479.
- 2.Sadhu Singh "**Theory of Machines**" Person Eduction (Singapore) Pvt. Ltd Indian Branch, New Delhi, 2nd Edition, 2006, ISBN: 9788177581270

## **Reference Books**

1.J.V. Shigley, J.J.Uickers, G R Pennock "**Theory of Machines & Mechanisms**" Oxford University Press, 4th edition 201, ISBN: 9780195371239.

- 2.R.S.Khurmi and J.K.Gupta "Theory of Machines" S.Chand and Co., 2005, ISBN: 9788121925242.
- 3.P.L. Ballaney "Theory of Machines and Mechanisms" Khanna Publishers, delhi, 24th edition, 2005, ISBN: 9788174091222.
- 4.R.K. Bansal "**Theory of Machines-1**" Laxmi Publications. 1st edition, 2013, ISBN:9788131809846.
- 5.J.B.K.Das and P I Shrinivasa Murthy "Theory of Machines-1" Sapna book house, ISBN: 9788128001451.

## **Course Outcomes**

After learning all the units of the course, the student is able to;

- 1.**Identify** various mechanisms, **determine** their degrees of freedom; **describe** various inversions of four bar chain, single and double slider crank chain.
- 2.**Analyze** velocity of four bar and slider-crank mechanisms by relative velocity method and Instantaneous centre method. **Analyze** acceleration of four bar and slider-crank mechanisms by relative acceleration method.
- 3.Classify different types of gears; Explain Spur Gear terminology, law of gearing, interference and Back lash. Derive expressions for Path of contact, arc of contact and contact ratio. Solve numerical problems related to gears.
- 4.**Describe** Simple, Compound and Epicyclic gear trains; **Determine** velocity ratio, tooth load and torque in epicyclic gear trains. **Explain** and **calculate** ratio of belt tensions; **Estimate** power transmitted by belt drive; **Analyze** effect of slip, initial and centrifugal belt tension on performance of belt drive.
- 5.**Explain** cam and follower types; **Explain** different follower Motions; **Construct** cam profiles for different types of follower motions.

	Course Articul	ati	on	Ma	tri	X									
	Course Outcomes			F	ro	gra	m	Ou	tco	me	s			PS	50
	<b>Course Outcomes</b>	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	<b>Identify</b> various mechanisms, <b>determine</b> their degrees of freedom; <b>describe</b> various inversions of four bar chain, single and double slider crank chain.	2	1											-	-
CO2	<b>Analyze</b> velocity of four bar and slider- crank mechanisms by relative velocity method and Instantaneous centre method. <b>Analyze</b> acceleration of four bar and slider-crank mechanisms by relative acceleration method.	2	1								2			-	-
CO3	<b>Classify</b> different types of gears; <b>Explain</b> Spur Gear terminology, law of	2	2	2										-	-

	gearing, interference and Back lash.									
	Derive expressions for Path of contact,									
	arc of contact and contact ratio. Solve									
	numerical problems related to gears.									
	Describe Simple, Compound and									
	Epicyclic gear trains; <b>Determine</b>									
	velocity ratio, tooth load and torque in									
<b>CO4</b>	epicyclic gear trains. Explain and	2	2	2					_	_
04	calculate ratio of belt tensions; Estimate	4	4	4					-	-
	power transmitted by belt drive; Analyze									
	effect of slip, initial and centrifugal belt									
	tension on performance of belt drive.									
	<b>Explain</b> cam and follower types;									
CO5	Explain different follower Motions;	2	2	2			2			
005	Construct cam profiles for different	4	4	4			4		-	-
	types of follower motions.									

Cou	se Title: Manufact	turin	g Process - II	
Course Code: P17ME46	Semester: IV		L-T-P-H: 4-0-0-4	Credits: 04
Contact Period - Lecture: 52H	rs. Exam: 3Hrs.	Wei	ightage: CIE: 50 %;	SEE: 50%

**Course Objectives:** This course enables the student to understand basic manufacturing processes like forging, rolling, sheet metal forming and powder metallurgy.

## Course Content

UNIT-I

INTRODUCTION TO METAL WORKING: Classification of metal working processes, characteristics of wrought products, advantages and limitations of metal working processes. Concepts of true stress, true strain, biaxial & triaxial stresses. Determination of flow stress. Principal stresses, Tresca & Von-Mises yield criteria, concepts of plane stress & plane strain. Temperature, strain rate, friction and lubrication, hydrostatic pressure in metalworking, Deformation zone geometry, workability of materials. 12Hrs

Self study component: Residual stresses in wrought products

## UNIT-II

FORGING & ROLLING: classification of forging processes. Forging machines & equipment. Expressions for forging pressures & load in open die forging and closed die forging by slab analysis, concepts of friction hill and factors affecting it, Die-design parameters. Material flow lines in forging. Forging defects, Residual stresses in forging. Simple problems. Classification of Rolling processes. Types of rolling mills, expression for Rolling load. Roll separating force. Frictional losses in bearing, power required rolling, Effects of front & back tensions, frictions, friction hill. Defects in rolled products. Numericals.

Self study component: Safety issues in forging and rolling operations

## UNIT-III

**EXTRUSION & WIRE DRAWING:** Types, Application, Variables in extrusion, Extrusion dies. Relationship between speed of extrusion and extrusion pressure. Special extrusion processes: Impact extrusion, hydrostatic extrusion, extrusion of brittle metals, Seamless Tube extrusion, Closed cavity extrusion, Powder extrusion. Metal flow pattern in extrusion with and without lubrication. Defects in extruded products. Analysis for extrusion force problems. Introduction to wire drawing, Drawing ratio, Steps in drawing operation Work done in homogenous deformation. Work formula for wire drawing. Max. Possible reduction of area per pass. Drawing equipment & dies, Drawing speed Vs wire diameter. Drawing stress Vs strain. Expression for drawing load by slab analysis. Power requirement. Redundant work and its estimation, optimal cone angle & dead zone formation, drawing variables, Numericals.

Self study component: Tube drawing process and classification of tube drawing

## UNIT-IV

SHEET & METAL FORMING: Forming methods dies & punches, progressive die, compound die, combination die. Rubber forming. Open back inclinable press (OBI press), piercing, blanking, bending, deep drawing, LDR in drawing, Forming limit criterion, defects of drawn products, stretch forming. Roll bending & contouring, Sheet metal drawing process, types. Deep drawing, stresses in deep drawing, Numericals. 10Hrs

Self study component: Safety aspects in forming operations.

## UNIT-V

**POWDER METALLURGY:** Basic steps in Powder metallurgy brief description of methods of production of metal powders, Characteristics of powder. Conditioning and blending powders, Compaction and sintering. Sintering types, Mechanism of Sintering, Effect of sintering on structure and dimensional changes. Sintering furnaces, post sintering operations.

Depa	artment of Mechanical Engineering														
Appl	lication of powder metallurgy components,	adv	ant	age	s ai	nd I	lim	itat	ior	ıs.					
PRC	CESSING OF PLASTICS AND CE	RA	MI	CS	: I	ntre	odu	cti	on,	t	ype	s	of	plast	tics,
Proc	essing of rubber, elastomers and ceramics.												1	0Hr:	s
Self	study component: Health and safety issues	s in	pro	ces	sin	g o	f pl	ast	ics	an	d r	ubt	ber.		
	Books														
1.Ge	orge E. Dieter, "Mechanical Metallurgy,	" T	'ata	Mo	G C	rav	vН	lill	Ec	luc	atio	on,	3 rd	Edit	ion,
	13, ISBN: 9781259064791.														
	rope Kalpakjian & Stevan R. Schmid, "Ma						gin	eel	rin	g a	nd	Τe	echi	iolog	gy,"
Pea	arson Education; 4 th Edition, 2014, ISBN: 9	978-	933	3253	358	00									
	ence Books														-
1.J.T	. Black, Ronald A. Kohser, "Materials an	nd F	Pro	cess	es	in	ma	nu	fac	tu	ring	g,"	Wi	ley,	$11^{\text{th}}$
	ition, 2011, ISBN: 978-0470924679.														
	W. Rowe, "Principles of Industrial m	eta	l w	ork	sing	g p	ro	ces	s,"	С	BS	Ρı	ıbli	sher,	$1^{st}$
	ition, 2005, ISBN: 978-8123904283														
	nitabha Ghosh and Asok Kumar Mallik,	"M	an	ufac	ctu	rin	g S	Scie	enc	:e,"	' E	ast	-We	est p	ress
	t. Ltd., 2010, ISBN: 978-8176710633														
	dhu Singh, Theory of Plasticity & Met	al l	For	min	lg 1	Pro	oce	sse	s,"	K	har	nna	Pu	blish	ers,
20	03, ISBN: 978-8174090508														
	<u>Course O</u>														
	learning all the units of the course, the stud														
	scribe different metal working processes and	nd i	ts a	ppli	icat	ior	IS.								
	ustrate metal working processes														
	alyse stresses and strain rate in metal work	ing	pro	oces	ses										
	plain powder metallurgy process.														
5.Dis	scuss processing of plastics and ceramics.														
	Course Articul	lati	on l												
			1	P	rog	rai	m (	)ut	tco	me	S			PS	<b>SO</b>
	<b>Course Outcomes</b>	1	2	3	4	5	6	7	8	9	10	11	12	01	02
	<b>Describe</b> different metal working			<u> </u>											
<b>CO1</b>	6	3	2	1									1	-	-
CO2	processes and its applications.	2	2	1									1		
02	<b>Illustrate</b> metal working processes <b>Analyse</b> stresses and strain rate in	3	2	1									1	-	-
CO3	metal working processes	3	2	1									1	-	-
CO4	<b>Explain</b> powder metallurgy process.	3	2	1	-								1		
	<b>Discuss</b> processing of plastics and	3	4	1									1	-	-
CO5	ceramics.	3	2	1									1	-	-
	ceramics.	l		<u> </u>	<u> </u>	l			<u> </u>	<u> </u>	<u> </u>				

Course Title: Metrology & Measurements laboratory	
	Credits: 1.5
Contact Period - Lecture: 36Hrs. Exam: 3Hrs. Weightage: CIE: 50 %;	SEE: 50%
<b>Course Objectives:</b> The course aims at making students familiar with different equipments and use of this in industry for quality inspection and safety.	ent measurement
Course Content	
PART-A	
Exp-1	
Calibration of Pressure Gauge	1.5 Hrs
Exp-2	
Calibration of Thermocouple	1.5 Hrs
Exp-3	
Calibration of LVDT	3 Hrs
Exp-4	
Calibration of Load Cell	3 Hrs
Exp-5	
Use of Planimeter.	3 Hrs
Exp-6	
Measurements of alignment using Autocollimator / roller set	3 Hrs
PART-B	
Exp-7	
Measurements of angle using Sine Center / Sine bar / Bevel protractor	3 Hrs
Exp-8	
Measurements of Screw thread Parameters using two wire and three-wire me	thod. 3 Hrs
Exp-9	
Measurements using Profile Projector / Toolmaker's Microscope	3 Hrs
Exp-10	
Measurements of cutting tool forces using	
a) Lathe tool Dynamometer	
b) Drill tool Dynamometer	3 Hrs
Exp-11	
Measurements of Surface roughness using Tally surf/mechanical Comparator	
Seminar Test	3 Hrs 3 Hrs
	51115
Reference Books	
1.R. K. Jain, "Engineering Metrology," 21 st Edition, Khanna Publish 817409153X	ers, ISBN: 9/8-
2.R. S. Sirohi and H. C. Radha Krishna, "Mechanical Measurements," 3	rd Edition, 1991.
New Age International, ISBN: 978-8122403831.	. ,
<u>Course Outcomes</u>	
After learning all the units of the course, the student is able to;	
1. <b>Demonstrate</b> calibration of pressure gauge, thermocouple and LVDT 2. <b>Use</b> Vernier/Micrometer and Sine Center / Sine bar / bevel protractor for	measurement of
linear dimension and angular.	measurement Of
3. <b>Measure</b> the thread parameters using two wire or three-wire method.	

4.Use tool makers microscope / profile projector for measurement of the thread parameters and tool wear

5.US	e Tally surf/mechanical Comparator to Me	asui	re :	Suri	ace	ro	ugn	nes	S						
	Course Articu	lati	on I	Ma	trix										
				P	rog	rar	n C	)uto	con	nes	5			PS	50
	<b>Course Outcomes</b>	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	<b>Demonstrate</b> calibration of pressure gauge, thermocouple and LVDT	3		2	3			1						-	-
CO2	<b>Use</b> Vernier/Micrometer and Sine Center / Sine bar / bevel protractor for measurement of linear dimension and angular.	3			3									-	1
CO3	<b>Measure</b> the thread parameters using two wire or three-wire methods.	3			3									-	-
CO4	<b>Use</b> tool makers microscope / profile projector for measurement of the thread parameters and tool wear	3			3									-	-
CO5	<b>Use</b> Tally surf/mechanical Comparator to Measure Surface roughness	3	3		3		3							-	1

5. Use Tally surf/mechanical Comparator to Measure Surface roughness

Course Title: Basic Material	Te	stii	ng	La	bo	rat	or	y					
Course Code: <b>P17MEL48</b> Semester: IV			<u>г-Р</u>					-	Cı	edit	ts: 1	1.5	
	Veig											: 50%	6
<b>Course Objectives:</b> To learn how to character			<u> </u>					-					
properties and behaviors of engineering materials													
equipments and techniques.	anu	10	111	uo	uu		vai	ict		1116	iici.		sung
	tom	4											
Course Con		ι											
PART-A													
Exp-1		•1			1							<b>.</b>	1
Tensile, Compression, Shear and Torsion tests o	n m	nilc	1 ST	tee	IS	pe	21m	lens		<u> </u>		Univ	ersal
Testing Machine										<b>5 H</b>	rs		
<b>Exp-2:</b> Bending Test on mild steel, wooden specim	ens.											3 H	rs
Exp-3													
Preparation of specimen for metallographic examination									<u> </u>		-		rials.
Identification of microstructures of plain carbon	stee	el,	too	ol s	stee	el,	gre	ey (	CI,	SG	irc	on, E	rass,
Bronze and composites.										<u>6</u> I	Hrs		
PART-I	3												
Exp-4													
Impact Tests: Izod and Charpy tests on mild steel sp	ecii	ne	ns.								<b>3</b> H	Irs	
Exp-5													
Hardness tests: Brinnell, Rockwell and Vickers's H	ardn	ies	s te	sts	5.						3 H	lrs	
Exp-6				~									
Heat treatment: Annealing, Normalizing, Hardening	and	T h	'err	nne	erin	g (	of F	Ferr	ous	allo	ovs	and	study
their Rock well's hardness.	, un		•11	-P •		0			Hrs		<i>.</i>	una	jeady
Exp-7								U I					
Fatigue test- 4 point bending (Demonstration only)										31	Hrs		
Seminar										51	113	<b>3</b> H	re
Test												3 H	
Reference Books												31	15
	Tate			5	ior		0.10		Zma	ino			Vilor
1. William D. Callister and David G. Rethwisch, "N		200	ais	30	ler	ice	an		ug	ine	erii	ig v	vney
India Pvt. Ltd, 9 th edition, 2014, ISBN: 978-11183					<b>٦</b> 7	C		<b>T T</b>	11 T	. 1		р	•
2.Sidney Avner, "Introduction to Physical Metall	urg	<b>y</b> "	Ta	ita	M	CGI	aw	' <b>H</b> 1		duc	catio	on Pi	ivate
Ltd., 2 nd edition, 1997, ISBN: 978-0074630068.													
<u>Course Outc</u>													
After learning all the units of the course, the student	is al	ble	to;										
1. Determine the mechanical properties of material	spec	cim											
1. <b>Determine</b> the mechanical properties of material 2. <b>Prepare</b> material specimen for metallographic	spec	cim			re	cog	gniz	ze	the	mic	cro	struc	ctural
1 1	spec	cim			re	coį	gni	ze	the	mio	cro	struc	ctural
2. Prepare material specimen for metallographic	spec	cim			re	coį	gniz	ze	the	mio	cro	struc	ctural
2. <b>Prepare</b> material specimen for metallographic features of material.	spec	cim			re	COĮ	gni	ze	the	mio	cro	struc	ctural
<ul><li>2.Prepare material specimen for metallographic features of material.</li><li>3.Demonstrate heat treatment of metal specimens.</li></ul>	spec	im ies	a	nd	re	coş	gniz	ze	the	mio	cro	struc	ctural
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulation</li> </ul>	spec	im ies	an atri	nd i <b>x</b>							cro		
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> </ul>	spec	eim ies Ma	ai atri Pr	nd ix og	ra	m	Du	tco	mes	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> </ul>	on 1	cim ies <u>Ma</u>	atri Pr 3	ix og	<b>ra</b> 5	m	Du	tco 8	<b>me</b> s 9 1			Р	
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulation</li> <li>Course Outcomes</li> <li>CO1</li> </ul>	on 1	eim ies Ma	ai atri Pr	ix og	<b>ra</b> 5	m	Du	tco 8	mes	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1 Determine the mechanical properties of material specimen.</li> </ul>	on 1	cim ies <u>Ma</u>	atri Pr 3	ix og	<b>ra</b> 5	m	Du	tco 8	<b>me</b> s 9 1	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1</li> <li>Determine the mechanical properties of material specimen.</li> <li>Prepare material specimen for metallographic</li> </ul>	spec stud	cim ies <u>Ma</u>	atri Pr 3	nd ix og 4 3	<b>1</b> 5 2	m	Du	tco 8	mes 9 1 2	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1 Determine the mechanical properties of material specimen.</li> <li>Prepare material specimen for metallographic studies and recognize the micro structural</li> </ul>	spec stud	cim ies <u>Ma</u>	atri Pr 3	ix og	<b>ra</b> 5	m	Du	tco 8	<b>me</b> s 9 1	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1</li> <li>Determine the mechanical properties of material specimen.</li> <li>Prepare material specimen for metallographic studies and recognize the micro structural features of material.</li> </ul>	spectrud	cim ies <u>Ma</u>	atri Pr 3	nd ix og 4 3	<b>1</b> 5 2	m	Du	tco 8	mes 9 1 2	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1 Determine the mechanical properties of material specimen.</li> <li>Prepare material specimen for metallographic studies and recognize the micro structura features of material.</li> <li>CO3 Demonstrate heat treatment of metal</li> </ul>	spectrud	cim ies <u>Ma</u>	atri Pr 3	nd ix ix iog 4 3 3	<b>1</b> 5 2	m 6	Du	<b>tco</b> 8	mes 9 1 2 2	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1</li> <li>Determine the mechanical properties of material specimen.</li> <li>CO2</li> <li>Prepare material specimen for metallographic studies and recognize the micro structura features of material.</li> <li>CO3</li> <li>Demonstrate heat treatment of metal specimens.</li> </ul>	spectrud	2 3	atri Pr 3	nd ix ix ig 4 3 3 2	<b>3</b> <b>2</b> <b>3</b>	m 6 2	Du	<b>tco</b> 8	mes 9 1 2 2 2	5		Р	<u>80</u>
<ul> <li>2.Prepare material specimen for metallographic features of material.</li> <li>3.Demonstrate heat treatment of metal specimens.</li> <li>4.Demonstrate 4 point bending fatigue test.</li> <li>Course Articulati</li> <li>Course Outcomes</li> <li>CO1 Determine the mechanical properties of material specimen.</li> <li>Prepare material specimen for metallographic studies and recognize the micro structura features of material.</li> <li>CO3 Demonstrate heat treatment of metal</li> </ul>	spectrud	cim ies <u>Ma</u>	atri Pr 3	nd ix ix iog 4 3 3	<b>1</b> 5 2	m 6	Du	<b>tco</b> 8	mes 9 1 2 2	5		Р	<u>80</u>

Department of Mechanical Engineering	
Course Title: Aptitude and Reasoning Dev	elopment - INTERMEDIATE (ARDI)
Course Code: P17HU49 Semester: IV	L-T-P-H: 0-0-2-2 Credits: 01
Contact Period - Lecture: 32Hrs.; Exam:3Hrs.	Veightage: CIE: 50 %; SEE: 50%
Relevance of the course:	
4 th semester deals with more of quantitative aptitud	e. It is the intermediate level of aptitude which
involves modules like Time speed distance. Time and	
logical abilities through modules like cubes and Caler	
Course Co	ontent
UNIT	-I
Time, Speed and Distance:	
Concept of motion and mathematical representation o between kmph to m/s, Concept of average speed an speed– Importance, application and observation in direction, An application of allegation in Time speed and streams– resultant speed, upstream and downs bodies meeting at the starting point or anywhere in problems under different constraints. Application of s <b>Self-study Component-</b> Basic relation between the 3 different units of measurement. Speed and velocity.	d its application in different scenarios, Relative day to day life, same direction and opposite and distance, Trains– Different scenarios. Boats tream concept. Circular motion– Two or three the track. Races– Concept of head start, solving olving problems under Clocks.
UNIT	Ī
Cubes, Clocks & Calendars:	and other. Number of color 1.0
<b>Cubes:</b> Number of faces, vertices and edges. Col formulae to find-out the same. Problems on cubes.	ored cubes. Number of colored faces and the
<b>Clocks &amp; Calendars:</b> Minute spaces. Hour hand and	minute hand Angle between the hands Polative
speed. Faulty clocks. Time gained or lost by the clock	
of odd days. Problems on clocks and calendars.	x. Odd days. Leap year. Ordinary year. Counting
Self-study Component- Knowledge about shapes	and dimensions. Area and volume Lean year
number of days. Important dates.	8 Hrs
UNIT-	
Set theory and Venn diagram: Set builder form Operation of sets using venn diagram, Important p minima in set operation, Venn diagram for four sets. Syllogism: Meaning of syllogisms, Format of p distribution, Standard question pattern, Application o diagrams: Analysis of the given problem and solve it Self-study Component- Basics about sets, operations	, Tabular form, Venn diagram, Types of sets, properties, Algebraic laws of sets, Maxima and problems and standard qualifiers, Concept of f venn diagram to solve problems. <b>Logical Venn</b>
UNIT-	
Geometry and Mensuration:	
Theory, straight lines, triangles– theorems, area, lin property of an equilateral triangle, Application of Py triangles, Basic proportionality theorem, Polygo Rectangle, Rhombus, Square, Division of polyg Concyclic points concept, Cyclic quadrilateral, Cin Sector, Segment, Tangent, Secant, Area of common of a solid, Net of a solid, Cuboid, Cube, Right cylind Cone– frustum of a cone, Sphere, Combination of sol	thagoras theorem, Congruency and similarity of ns, Quadrilaterals, Trapezium, Parallelogram, gons, Circumscribed and Inscribed polygons, rcle– Radius, Area and perimeter, Arc, Chord, region Solid figures– Introduction, Classification der, Pyramid– right pyramid, triangular pyramid,

## **Co-ordinate geometry:**

Cartesian coordinate geometry- rectangular coordinate axis, distance formula, Section formula, Area of a triangle, Centre of gravity or Centroid of a triangle, In-centre of a triangle, Circumcentre of a triangle, Orthocentre of a triangle, Collinearity of three points, Slope of a line, Different forms of

equations of a straight line, Perpendicularity and parallelism, Length of perpendicular.	
Self-study Component-Basics of geometry, formula, dimensions, shapes. Different types of lines.	
Example – parallel, intersecting etc 8 Hrs	
UNIT-V	
Time and Work:	
Relationship between time and work. Importance of efficiency, Conventional method of solving	
problems, L.C.M method, Negative work, The specific case of building a wall, Group work, Constant	
product rule, When work is not constant, Pipes and cistern-Similarity of logic.	
Self-study Component-LCM methods, basic arithmetic. Fractions and efficiency.4 Hrs	
Reference Books	
1. The Trachtenberg speed system of basic mathematics, published by Rupa publications.	
2.CAT Mathematics by AbhijithGuha. published by PHI learning private limited.	
3. Quantitative aptitude by Dr. R. S Agarwal, published by S. Chand private limited.	
4. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.	
5. Quantitative aptitude for CAT by Arun Sharma, published by McGraw Hill publication.	
6.Analytical reasoning by M.K Pandey BSC PUBLISHING.CO.PVT.LTD	
<u>Course Outcomes</u>	
After learning all the units of the course, the student is able to;	
1.Solve problems of higher difficulty level with ease in the following topics- Time, speed and	
distance and Geometry. L5	
2.Analyze the number of colored faces in a cube when it is cut into different number of pieces and	
solve the problems under clocks and calendars. L5	
3.Apply the concept of L.C.M in the module time and work to solve the problems with comprehension. L2	
4. Analyze the concepts in Co-ordinate geometry by spatial visualization. L4	
5.Interpret the logic in the statements of syllogism by critical thinking and apply venn diagram for the effectives ways of deriving at the conclusion. L4	
<ul><li>6.Determine the solutions for complicated problems of set theory using the concept of venn diagram.</li><li>L4</li></ul>	

Course Title: Additional Mathematics-II	
(Mandatory Learning Course: Common to All Branches)	
(A Bridge course for Diploma qualified students of III Sem. B. E.)	
Course Code: P17MADIP41Semester: IVL-T-P-H: 4-0-0-4Credits: NA	
Contact Period - Lecture: 52Hrs. Exam: 3Hrs. Weightage: CIE: 50 %; SEE: 5	0%
Course Content	
UNIT-I	
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon	
of a matrix. Consistency of system of linear equations - Gauss elimination method. G	
Jordan and LU decomposition methods. Eigen values and eigen vectors of a square material	
Application of Cayley-Hamilton theorem(without proof) to compute the inverse of a ma	
Examples. 10 H	Irs
UNIT-II	
Higher order ODE's: Linear differential equations of second and higher order equa	
with constant coefficients. Homogeneous /non-homogeneous equations. Inverse different	
operators.Solutions of initial value problems. Method of undetermined coefficients	
variation of parameters. Solution of Cauchy's homogeneous linear equation and Legen	
	Hr
UNIT-III	
Multiple Integrals: Double and triple integrals-region of integration. Evaluation of do	oub
integrals by change of order of integration.	
Vector Integration : Vector Integration :Integration of vector functions. Concept of a	
integrals, surface and volume integrals. Green's, Stokes's and Gauss theorems (with	
	Hr
UNIT-IV	
Laplace transforms: Laplace transforms of elementary functions. Transforms of deriva	
and integrals, transforms of periodic function and unit step function-Problems only. In	
Laplace transforms: Definition of inverse Laplace transforms. Evaluation of In-	
transforms by standard methods. Application to solutions of Linear differential equations	
1	Hr
UNIT-V	
Probability: Introduction. Sample space and events. Axioms of probability. Addition	
multiplication theorems. Conditional probability - illustrative examples. Bayes's theo	
	$\mathbf{H}$
Sext Books	
2. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 42 ⁿ	ĽΕ
2012.	
Reference Books	
8. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 6th Ed., 2007. 9. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 200	